

# PFAS Detailed Site Investigation

Home Hill Fire Station, 83 Tenth Avenue, Home Hill, Queensland

**Queensland Fire and Emergency Services** 

## PFAS Detailed Site Investigation

Client: Queensland Fire and Emergency Services

ABN: 93 035 163 778

## Prepared by

AECOM Australia Pty Ltd
Level 8, 540 Wickham Street, PO Box 1307, Fortitude Valley QLD 4006, Australia T +61 7 3553 2000 F +61 7 3553 2050 www.aecom.com

ABN 20 093 846 925

10-Feb-2020

Job No.: 60609758

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 AS/NZS4801 and OHSAS18001.

#### © AECOM Australia Pty Ltd. All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

## **Quality Information**

Document PFAS Detailed Site Investigation

Ref 60609758

Date 10-Feb-2020

Prepared by Camden McCosker

Reviewed by James Peachey

## **Revision History**

| Rev  | Revision Date | Details | Authorised                      |           |
|------|---------------|---------|---------------------------------|-----------|
| I CV |               | Details | Name/Position                   | Signature |
| А    | 19-Nov-2019   | Draft   | Frances Lee<br>Project Director |           |
| В    | 29-Jan-2020   | Draft   | Frances Lee<br>Project Director |           |
| 0    | 10-Feb-2020   | Final   | Frances Lee<br>Project Director | Foller    |

## **Table of Contents**

| 1.0     | Introduc   | tion                                                                 | 1           |
|---------|------------|----------------------------------------------------------------------|-------------|
|         | 1.1        | General                                                              | 1           |
|         | 1.2        | Background                                                           | 1           |
|         | 1.3        | Objectives                                                           | 1           |
|         | 1.4        | Scope of Works                                                       |             |
|         | 1.5        | PFAS Analysis                                                        | 2<br>2<br>3 |
|         | 1.6        | Relevant Regulation and Guidance                                     | 3           |
| 2.0     | Site Sett  |                                                                      | 4           |
| 2.0     | 2.1        | Site Identification                                                  | 4           |
|         | 2.2        | Site Layout and Features                                             | 4           |
|         | 2.2        |                                                                      | 5           |
|         | 2.3<br>2.4 | Surrounding Land Use                                                 | 6           |
| 2.0     |            | Previous Environmental Investigation                                 | 7           |
| 3.0     |            | mental Setting                                                       | 7           |
|         | 3.1        | Climate                                                              | 7           |
|         | 3.2        | Site Topography                                                      | 7           |
|         | 3.3        | Soil Type and Acid Sulfate Soils (ASS)                               | 7           |
|         | 3.4        | Geology                                                              | 7           |
|         | 3.5        | Hydrology                                                            | 8           |
|         | 3.6        | Hydrogeology                                                         | 8           |
|         | 3.7        | Environmental Values                                                 | 9           |
|         | 3.8        | Groundwater Dependent Ecosystems and Environmentally Sensitive Areas | 9           |
| 4.0     | Fieldwor   | rk- DSI                                                              | 10          |
|         | 4.1        | Overview                                                             | 10          |
|         | 4.2        | Sampling Rationale                                                   | 10          |
|         | 4.3        | Laboratory Analysis and Quality Assurance / Quality Control          | 13          |
| 5.0     |            | nent Criteria                                                        | 14          |
| 6.0     | Results    |                                                                      | 15          |
| 0.0     | 6.1        | Soil Conditions                                                      | 15          |
|         | 6.2        | Hydrogeology                                                         | 15          |
|         | 6.3        | Analytical Results                                                   | 16          |
| 7.0     | Discussi   | ·                                                                    | 19          |
| 7.0     | 7.1        | Geological and Hydrogeological Conditions                            | 19          |
|         | 7.1        | Soil Analytical Results                                              | 19          |
|         | 7.2        |                                                                      | 20          |
|         | 7.3<br>7.4 | Groundwater Analytical Results                                       | 21          |
|         |            | Comparison of PFAS composition in soil and groundwater samples       |             |
| 0.0     | 7.5        | Sediment Analytical Results                                          | 22          |
| 8.0     |            | tual Site Model - PFAS                                               | 23          |
|         | 8.1        | Introduction                                                         | 23          |
|         | 8.2        | Contaminants of Potential Concern                                    | 23          |
|         | 8.3        | Sources                                                              | 23          |
|         | 8.4        | Migration Mechanisms                                                 | 24          |
|         | 8.5        | Receptors and Exposure Pathways                                      | 25          |
|         | 8.6        | Assessment of Exposure Pathways                                      | 25          |
| 9.0     | Conclus    |                                                                      | 29          |
| 10.0    | Referen    |                                                                      | 31          |
| 11.0    | Limitatio  | ns                                                                   | 33          |
| Annondi | · Λ        |                                                                      |             |
| Appendi |            |                                                                      | ۸           |
|         | Figures    |                                                                      | A           |
| Appendi | хВ         |                                                                      |             |
|         | Tables     |                                                                      | В           |
|         |            |                                                                      |             |
| Appendi |            |                                                                      | _           |
|         | Photogra   | apns                                                                 | С           |

| Appendix    |                                                                          |        |
|-------------|--------------------------------------------------------------------------|--------|
| Е           | Bore Logs                                                                | D      |
| Appendix F  | E<br>ieldsheets and Calibration Certificates                             | Ε      |
| Appendix I  | =                                                                        |        |
|             | Surveying Report                                                         | F      |
| Appendix (  | G                                                                        |        |
| Δ.          | nalytical Data Validation                                                | G      |
| Appendix I  | Н                                                                        |        |
| Α           | nalytical Laboratory Reports                                             | Н      |
|             |                                                                          |        |
|             |                                                                          |        |
| List of Tal | oles (in text)                                                           |        |
| Table 1     | Compounds Analysed in the PFAS Suite                                     | 3      |
| Table 2     | Home Hill Fire Station Site Identification                               | 4      |
| Table 3     | Home Hill Fire Station Surrounding Land Use                              | 5<br>7 |
| Table 4     | Summary of Monthly Climate at Ayr DPI Research Station – 1951 to 2019    |        |
| Table 5     | Registered groundwater bores within 1 km of Home Hill Fire Station       | 9      |
| Table 6     | Summary of Fieldwork                                                     | 10     |
| Table 7     | Sampling Rationale                                                       | 10     |
| Table 8     | Soil Investigation Methodology                                           | 11     |
| Table 9     | Groundwater Investigation Methodology                                    | 12     |
| Table 10    | Sediment Investigation Methodology                                       | 13     |
| Table 11    | Summary of Laboratory Analyses                                           | 13     |
| Table 12    | Adopted investigation levels for PFAS                                    | 14     |
| Table 13    | Summary of Groundwater Quality Parameter Results                         | 15     |
| Table 14    | Summary of PFAS Soil Analytical Results and Assessment with Human Health |        |
| Table 14    | Guideline Values                                                         | 16     |
| Table 15    | Summary of PFAS Soil Analytical Results and Assessment with Ecological   | 10     |
| Table 15    | Guideline Values                                                         | 16     |
| Table 16    | Assessment of Groundwater Results with Human Health Guideline Values     | 17     |
| Table 17    | Summary of TOPA Analysis (Soil and Groundwater)                          | 17     |
| Table 17    | Summary of Sediment Results                                              | 18     |
|             |                                                                          | 21     |
| Table 19    | PFAS Composition in Soil and Groundwater Samples                         |        |
| Table 20    | Home Hill Fire Station CSM – PFAS                                        | 26     |

## List of Figures (in Appendix A)

| Figure 1 | Site Location                                |
|----------|----------------------------------------------|
| Figure 2 | Site Layout and Sampling Locations           |
| Figure 3 | Inferred Groundwater Contours: 6 August 2019 |
| Figure 4 | Soil PFAS Analytical Results                 |
| Figure 5 | Groundwater PFAS Analytical Results          |
| Figure 6 | Sediment PFAS Analytical Results             |
| Figure 7 | PFAS Conceptual Site Model                   |

## List of Tables (in Appendix B)

| Table T1 | Well Construction Details             |
|----------|---------------------------------------|
| Table T2 | Groundwater Gauging Results           |
| Table T3 | Groundwater Quality Parameter Results |
| Table T4 | Soil Analytical Results               |
| Table T5 | Groundwater Analytical Results        |
| Table T6 | Sediment Analytical Results           |

## **Abbreviations**

| AFFF     | Aqueous film forming foam                                                                       |  |
|----------|-------------------------------------------------------------------------------------------------|--|
| AHD      | Australian height datum                                                                         |  |
| ASC NEPM | Assessment of Site Contamination National Environment Protection Measure 1999 (as amended 2013) |  |
| ASRIS    | Australian Soil Resources Information System                                                    |  |
| ASS      | Acid sulfate soil                                                                               |  |
| CLA      | Contaminated Land Auditor                                                                       |  |
| CLID     | Contaminated land investigation document                                                        |  |
| CLR      | Contaminated Land Register                                                                      |  |
| COPC     | Contaminants of potential concern                                                               |  |
| CSM      | Conceptual site model                                                                           |  |
| DES      | Department of Environment and Science                                                           |  |
| DO       | Dissolved oxygen                                                                                |  |
| DQO      | Data quality objectives                                                                         |  |
| DQI      | Data quality indicator                                                                          |  |
| DSI      | Detailed site investigation                                                                     |  |
| EC       | Electrical Conductivity                                                                         |  |
| EMR      | Environmental Management Register                                                               |  |
| EPP      | Environmental Protection Policy                                                                 |  |
| ESA      | Environmentally Sensitive Areas                                                                 |  |
| EV       | Environmental Values                                                                            |  |
| GDE      | Groundwater Dependent Ecosystems                                                                |  |
| НЕРА     | Heads of Environmental Protection Agencies Australia and New Zealand                            |  |
| LOR      | Limits of reporting                                                                             |  |
| mbgl     | Metres below ground level                                                                       |  |
| mbtoc    | Metres below top of casing                                                                      |  |
| NATA     | National Association of Testing Authorities                                                     |  |
| NDD      | Non-destructive drilling                                                                        |  |
| NEMP     | National Environmental Management Plan                                                          |  |
| NEPC     | National Environment Protection Council                                                         |  |
| NMI      | National Measurement Institute                                                                  |  |
| NRME     | [Department of] Natural Resourcing, Mining and Energy                                           |  |
| ORP      | Oxidation reduction potential                                                                   |  |
| PFAS     | Per- and poly-fluoroalkyl substances                                                            |  |
| PFHxS    | Perfluorohexanesulfonic acid                                                                    |  |
| PFOA     | Perfluorooctanoic acid                                                                          |  |

| PFOS  | Perfluorooctanesulfonic acid                  |  |
|-------|-----------------------------------------------|--|
| PSI   | Preliminary site investigation                |  |
| QAS   | Queensland Ambulance Services                 |  |
| QA/QC | Quality assurance / quality control           |  |
| QFES  | Queensland Fire and Emergency Services        |  |
| SAQP  | Sampling analysis and quality plan            |  |
| SIR   | Site investigation report                     |  |
| SOP   | Standard operating procedure                  |  |
| SWL   | Static water level                            |  |
| TDS   | Total dissolved solids                        |  |
| TOPA  | Total oxidisable precursor assay              |  |
| USCS  | Unified soil classification system            |  |
| USEPA | United States Environmental Protection Agency |  |

## Glossary of Terms

| Term Definition                                                                                                                                                                                                                |                                                                                                                                                   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Aquifer                                                                                                                                                                                                                        | Geologic formation, group of formations, or part of a formation capable of transmitting and yielding economic or significant quantities of water. |  |
| Bore A cylindrical drill hole sunk into the ground from which water is pure or monitoring.                                                                                                                                     |                                                                                                                                                   |  |
| Borehole                                                                                                                                                                                                                       | A hole produced in the ground by drilling for the investigation and assessment of soil and rock profiles.                                         |  |
| Discharge                                                                                                                                                                                                                      | A release of water from a particular source.                                                                                                      |  |
| Drainage                                                                                                                                                                                                                       | Natural or artificial means for the interception and removal of surface or subsurface water.                                                      |  |
| Finished Foam                                                                                                                                                                                                                  | Finshed foam is formed following aeration of the foam concentrate.                                                                                |  |
| Groundwater                                                                                                                                                                                                                    | Water located within an aquifer; that is, held in the rocks and soil beneath the earth's surface.                                                 |  |
| Groundwater monitoring well                                                                                                                                                                                                    | A bore which has been specifically constructed to allow groundwater measurements to be taken and groundwater samples to be collected.             |  |
| Groundwater A hydrologic process by which water enters the aquifer by moving downwa from surface water to groundwater.                                                                                                         |                                                                                                                                                   |  |
| Hydrogeology                                                                                                                                                                                                                   | The study of subsurface water in its geological context.                                                                                          |  |
| Hydrology The study of rainfall and surface water runoff processes.                                                                                                                                                            |                                                                                                                                                   |  |
| Impact Influence or effect exerted by a project or other activity on the natural community environment.                                                                                                                        |                                                                                                                                                   |  |
| Pollutant / contaminant  Any matter that is not naturally present in the environment.                                                                                                                                          |                                                                                                                                                   |  |
| Primary Source  A primary source is a storage vessel or area where there is the point contaminant to be directly released to ground (e.g. by leaks or spill release).                                                          |                                                                                                                                                   |  |
| Runoff The portion of water that drains away as surface flow.                                                                                                                                                                  |                                                                                                                                                   |  |
| Saturated zone  This portion of the subsurface below the groundwater table in which a the soil and rock are completely filled with water.                                                                                      |                                                                                                                                                   |  |
| Secondary Source  A secondary source is an area impacted by a primary source that has potential for ongoing release of contaminants. For example contaminadsorbed to soil could act as a source of contamination to groundwate |                                                                                                                                                   |  |
| Stormwater Water that travels through drains following precipitation events.                                                                                                                                                   |                                                                                                                                                   |  |
| Surface water Water flowing or held in streams, rivers and other wetlands in the lands                                                                                                                                         |                                                                                                                                                   |  |
| Tributary                                                                                                                                                                                                                      | A river or stream flowing into a larger river or lake.                                                                                            |  |
| Unsaturated zone The portion of the subsurface above the groundwater table. The soil are this zone contains air as well as water in its pores.                                                                                 |                                                                                                                                                   |  |
| Water table                                                                                                                                                                                                                    | The surface of saturation in an unconfined aquifer at which the pressure of the water is equal to that of the atmosphere.                         |  |

## **Executive Summary**

## Background

AECOM Australia Pty Ltd (AECOM) was engaged by Queensland Fire and Emergency Services (QFES) to undertake an evaluation of the concentration and distribution of per- and poly- fluoroalkyl substances (PFAS) at Home Hill Fire Station, located at 83 Tenth Avenue, Home Hill, Queensland (the site). The location of the site is shown in **Figure 1** in **Appendix A**.

QFES is conducting the environmental investigation at Home Hill Fire Station using a staged approach. Stage 1 consisted of a preliminary site investigation (PSI) and sampling, analysis and quality plan (SAQP), which was completed in April 2019 (AECOM, 2019). Under Stage 2 of the project, a Queensland Contaminated Land Auditor (CLA) reviewed and endorsed the works completed in Stage 1. Following completion of Stages 1 and 2, QFES has engaged AECOM to undertake Stage 3 of the project, which is the delivery of the PFAS detailed site investigation (DSI) to implement the scope of work identified in the SAQP.

This report forms the Site Investigation Report (SIR) for the DSI and is consistent with the requirements of a Contaminated Land Investigation Document (CLID).

## Key Findings of the PSI

The PSI (AECOM, 2019) was completed to understand the potential for PFAS contamination to be present at the fire station based on a review of the site and environmental setting and historical operations and practices. The PSI identified that firefighting training using aqueous film forming foam (AFFF) containing PFAS occurred at the fire station prior to 2003. Based on the findings of a site inspection and anecdotal information from site staff, firefighting training using AFFF took place in the open grassed area in the central area of the site. The volume of foam concentrate used was not specified but was noted to be limited. No infrastructure (e.g. tanks) is known to have stored foam on the site. The area used for firefighting training using foam was identified as the main potential PFAS source area with the Case 4 Pit identified as a secondary source area associated with potential storage and uncontrolled release of PFAS impacted water.

#### **Objectives**

The objectives of the works were to characterise potential PFAS impacts in soil and groundwater, including concentration and distribution, within and at the boundaries of the Home Hill Fire Station to assess the potential risks to human health and the environment and to update the PFAS conceptual site model (CSM) for the site.

#### Investigation Scope

The DSI was completed between July and September 2019. The DSI scope of work was completed in accordance with the SAQP (AECOM, 2019) and included the drilling of four soil bores on the site (drilled to approximately 10 metres below ground level, mbgl) that were converted to groundwater monitoring wells, advancement of four soil bores to between 0.1 and 0.5 mbgl, collection of soil and groundwater samples from the bores and sediment samples from the drainage lines. Surface water sampling was planned but could not be conducted as the drainage features were dry at the time of sampling. Laboratory analysis was undertaken for PFAS followed by preparation of this interpretative report.

#### Key Findings of the DSI

The key findings of the PFAS DSI are presented below.

- Groundwater elevations in August 2019 indicated a shallow aquifer is present beneath the site.
  Depth to groundwater was approximately 8.4 mbgl. Groundwater was inferred to locally flow
  towards the north/northeast. This is consistent with the expected regional groundwater flow
  direction, which is likely to be from south to north towards the Burdekin River, which is the main
  hydrological feature in the area.
- The primary PFAS compound present in the soil samples was perfluorooctanesulfonic acid (PFOS). The soil samples collected were from bores located adjacent to the main potential source area, the foam training area, and the area where the Case 4 Pit was located. The highest sum of

perfluorohexanesulfonic acid (PFHxS) and PFOS concentrations detected were in the shallow soil (0.5 mbgl) in a bore located to the east of the foam training area in the central portion of the site (HH\_SS01). PFAS concentrations were at relatively higher concentrations in soil samples from bores adjacent to the foam training area indicating the area may have had a larger historical footprint. The soil samples analysed from bores in and around the foam training area indicated that soil PFAS (PFHxS and PFOS) concentrations decreased with increased depth, with relatively higher PFAS concentrations in the near-surface material. Elevated PFAS concentrations in soil were also detected in unsaturated and saturated zone samples collected from a soil bore (HH\_BH03) located adjacent to the Case 4 Pit indicating a potential historical source of PFAS to soil in this area.

- None of the 18 soil samples analysed from eight soil bores exceeded the National Environmental Management Plan (NEMP) (HEPA, 2018) health guideline values for commercial land use. The concentration of PFOS in one soil sample from an unsealed area (HH\_SS1 at 0.5 mbgl (0.223 mg/kg)) exceeded the NEMP (HEPA, 2018) ecological PFOS guideline value for a commercial land use. Landscaped/grassy areas, potentially accessible to ecological receptors are located in the central and eastern portion of the site. Analytical results for nine soil samples detected PFOS concentrations that exceeded the guideline value for ecological indirect exposure for residential land use. Due to the urbanised setting of the site, it is considered that the ecological receptors would be transient in nature, and comparison against the residential land use guideline is considered to be an appropriately conservative approach. The higher PFOS concentrations were detected in fill materials (to 0.8 mbgl) and in samples of natural soil located immediately below the base of the fill.
- The primary PFAS compounds detected in groundwater were PFHxS and PFOS. Σ(PFHxS+PFOS) concentrations exceeding the NEMP (HEPA, 2018) human health drinking water guideline value were reported in groundwater samples from all four monitoring wells. Two groundwater samples with relatively higher concentrations (5.1 μg/L and 3.7 μg/L Σ(PFHxS+PFOS) were located adjacent and cross-gradient to the Case 4 Pit (HH\_MW03) and foam training area (HH\_MW02), respectively. Groundwater concentrations in the other two monitoring wells, which were located hydraulically up- or cross-gradient of the foam training area, had relatively lower concentrations (up to 0.53 μg/L Σ(PFHxS+PFOS). This indicates the foam training area and the area of the Case 4 Pit are potentially source areas of PFAS to groundwater. The Case 4 Pit area and HH\_MW03 are noted to be down-gradient of the adjacent SES facilities (a potential off-site source area) and cross-gradient to the foam training area.
- The lateral extent of the area of groundwater with elevated concentrations of PFHxS and PFOS is uncertain and has not been established in any direction. Based on the presence of a potentially permeable shallow sand aquifer and inferred local flow direction towards the north, there is the potential for PFAS in groundwater to extend off-site beyond the northern site boundary at concentrations in excess of human health and ecological guideline values. Residential and commercial properties and recreational land are present beyond the northern site boundary with the closest registered bore used for water supply present approximately 370 m northeast of the northern site boundary. There are 12 registered bores screened in the shallow aquifer (approximately 10 mbgl) that are used for water supply and which are located hydraulically downgradient, within 1 km of the site. The closest surface water receptor is a canal located approximately 650 m north of the site, with the Burdekin River present approximately 3 km north of the site.
- The laboratory analytical technique for total oxidisable precursor assay (TOPA) is used to detect
  certain harder to analyse PFAS precursor compounds that may be present. The results of TOPA
  analysis on one soil and one groundwater sample did not indicate the presence of PFAS
  precursors. The results indicated a degraded PFAS product that is unlikely to significantly
  increase or alter through bio-transformation or oxidation processes.
- Based on information provided as part of the PSI, the source of the PFAS detected in soil and groundwater samples is considered likely to be related to the historical firefighting training practices at the fire station, or spills from storage containers, product transfer and other maintenance activities.

Based on these key findings, the PFAS CSM developed for the PSI has been updated. A number of possibly complete exposure pathways for PFAS sourced from the fire station to impact off-site human and ecological receptors have been identified. The significance of these potentially complete source-pathway-receptor linkages is uncertain and further investigation is required to understand the potential risks to off-site receptors.

#### 1

## 1.0 Introduction

#### 1.1 General

AECOM Australia Pty Ltd (AECOM) was engaged by Queensland Fire and Emergency Services (QFES) to undertake an evaluation of the concentration and distribution of per- and poly- fluoroalkyl substances (PFAS) at Home Hill Fire Station, located at 83 Tenth Avenue, Home Hill, Queensland (the site). The location of the site is shown in **Figure 1** in **Appendix A**.

Historical practices and operations at QFES facilities including Home Hill Fire Station may have involved using firefighting foam containing PFAS. PFAS are an emerging family of compounds that are highly soluble, persistent and bio-accumulative in the environment. Following release to ground, they can be readily mobilised from soil source zones, and migrate significant distances in surface water and groundwater.

## 1.2 Background

QFES is conducting the environmental investigation at Home Hill Fire Station using the following staged approach:

- Stage 1: Development of the preliminary site investigation (PSI) and sampling, analysis and quality plan (SAQP). This stage was completed in April 2019 (AECOM, 2019).
- Stage 2: Review and endorsement of the PSI and SAQP by a Queensland Contaminated Land Auditor (CLA). This stage was completed in April 2019.
- Stage 3: Implementation of the scope of works identified in the SAQP by conducting a detailed site investigation (DSI) and completion of a draft site investigation report (SIR).
- Stage 4: Review and endorsement of the SIR report by a CLA.
- Stage 5: Provide the final SIR to the regulator (DES) and subject to any further requirements, procure a suitable environmental consultant to design an investigation plan to measure and assess offsite impacts.
- Stage 6: Engage an appropriately qualified third party CLA to audit the suitability of any offsite investigation plan to meet the requirements of DES prior to implementation.

This report forms the SIR for the Stage 3 DSI and has been prepared to meet the requirements of a Contaminated Land Investigation Document (CLID).

## 1.3 Objectives

The objectives of the works were to characterise potential PFAS impacts in soil and groundwater, at Home Hill Fire Station, to assess the potential risks to human health and the environment and to update the PFAS conceptual site model (CSM) for the site.

The key outcomes / deliverables of the Stage 3 works were as follows:

- Undertaking soil and groundwater sampling at Home Hill Fire Station, in accordance with the SAQP.
- Preparation of a draft SIR detailing the implementation of the DSI, in accordance with Australian guidance for investigation of sites potentially impacted by PFAS including the National Environmental Protection Council (NEPC), National Environmental Protection (Assessment of Site Contamination) Measure (NEPM) (1999, as amended 2013) (NEPC, 2013) and the PFAS National Environmental Management Plan (Heads of Environmental Protection Agencies (HEPA), 2018).

The stage 4 deliverable will be a final SIR that incorporates any comments/ corrections from the QFES review and inclusion of all the requirements of the audit by the CLA.

#### 1.4 Scope of Works

The scope of work undertaken to meet the objectives of the PFAS DSI were as follows:

- Completion of fieldwork in accordance with the CLA-endorsed SAQP (AECOM, 2019) which included the following activities:
  - Drilling of four soil bores (HH BH01 to HH BH04) to approximately 10 metres below ground level (mbgl), which were converted to groundwater monitoring wells (HH MW01 to HH MW04). Collection of soil samples at approximately 1.0 m intervals. Development of groundwater monitoring wells.
  - Collection of soil samples from shallow soil bores (HH SS1 to HH SS2) to 0.5 mbgl advanced in the grassed areas at the foam training area and the Case 4 Pit.
  - Collection of groundwater samples from the four new groundwater monitoring wells.
  - Collection of two sediment samples (HH SED01 and HH SED02) from the on-site drainage lines.
  - Surveying of the top of the casing at each monitoring well to MGA94 coordinates and Australian Height Datum (AHD).
  - Laboratory analysis of soil and groundwater for PFAS, with groundwater analysed for trace level concentrations.
- Preparation of an SIR (this report), which includes an update of the PFAS CSM.

Changes to the scope of works compared to the SAQP were as follows:

- Co-located surface water and sediment samples were to be collected from perimeter locations onsite where surface water flows may potentially occur, however, as water was not present at the time of sampling, only sediment samples were collected.
- The SAQP identified a shallow soil bore positioned on the lot (Lot 7 on H616103) occupied by State Emergency Services in the southern portion of the property. As this lot is outside the site boundary for the investigation, in replacement, two near surface soil samples were collected from the foam training area (HH SS3 and HH SS4).

#### 1.5 **PFAS Analysis**

Aqueous film forming foam (AFFF) manufactured over the last 50 years are estimated to contain between 200 and 600 possible PFAS compounds of varying signatures / composition (NEMP, HEPA, 2018<sup>1</sup>). However, at present, Australian commercial analytical laboratories, using National Association of Testing Authority (NATA) accredited methods, are currently able to analyse for around 28 PFAS (see Table 1). This analytical limitation is not considered significantly influential as the current PFAS laboratory analytical schedule includes the compounds that have guidelines available. These compounds were also the primary ingredients of AFFF and are more likely to be encountered where AFFF was used, stored and/or discharged.

Revision 0 - 10-Feb-2020

<sup>1</sup> Noting that the Draft NEMP Version 2.0 is currently out for public comment until June 2019 with expected publication in early 2020.

Table 1 Compounds Analysed in the PFAS Suite

| PFAS Group     | Compound                                          | Abbreviation | CAS No.     |
|----------------|---------------------------------------------------|--------------|-------------|
| Perfluoroalkyl | Perfluoro butane sulfonic acid                    | PFBS         | 375-73-5    |
| Sulfonic Acids | Perfluoropentane sulfonic acid                    | PFPeS        | 2706-91-4   |
|                | Perfluorohexane sulfonic acid                     | PFHxS        | 355-46-4    |
|                | Perfluoroheptane sulfonic acid                    | PFHpS        | 375-92-8    |
|                | Perfluorooctane sulfonic acid                     | PFOS         | 1763-23-1   |
|                | Perfluorodecane sulfonic acid                     | PFDS         | 335-77-3    |
| Perfluoroalkyl | Perfluorobutanoic acid                            | PFBA         | 375-22-4    |
| Carboxylic     | Perfluoropentanoic acid                           | PFPeA        | 2706-90-3   |
| Acids          | Perfluorohexanoic acid                            | PFHxA        | 307-24-4    |
|                | Perfluoroheptanoic acid                           | PFHpA        | 375-85-9    |
|                | Perfluorooctanoic acid                            | PFOA         | 335-67-1    |
|                | Perfluorononanoic acid                            | PFNA         | 375-95-1    |
|                | Perfluorodecanoic acid                            | PFDA         | 335-76-2    |
|                | Perfluoroundecanoic acid                          | PFUnDA       | 2058-94-8   |
|                | Perfluorododecanoic acid                          | PFDoDA       | 307-55-1    |
|                | Perfluorotridecanoic acid                         | PFTrDA       | 72629-94-8  |
|                | Perfluorotetradecanoic acid                       | PFTeDA       | 376-06-7    |
| Perfluoroalkyl | Perfluorooctane sulphonamide                      | FOSA         | 754-91-6    |
| Sulfonamides   | Sulfonamides N-Methyl perfluorooctane sulfonamide |              | 31506-32-8  |
|                | N-Ethyl perfluorooctane sulfonamide               | EtFOSA       | 4151-50-2   |
|                | N-Methyl perfluorooctane sulfonamidoethanol       | MeFOSE       | 2448-09-7   |
|                | N-Ethyl perfluorooctane sulfonamidoethanol        | EtFOSE       | 1691-99-2   |
|                | N-Methyl perfluorooctane sulfonamidoacetic acid   | MeFOSAA      | 2355-31-9   |
|                | N-Ethyl perfluorooctane sulfonamidoacetic acid    | EtFOSAA      | 2991-50-6   |
| Fluorotelomer  |                                                   |              | 757124-72-4 |
| Sulfonic Acids | 6:2 Fluorotelomer sulfonic acid                   | 6:2 FTS      | 27619-97-2  |
|                | 8:2 Fluorotelomer sulfonic acid                   | 8:2 FTS      | 39108-34-4  |
|                | 10:2 Fluorotelomer sulfonic acid                  | 10:2 FTS     | 120226-60-0 |

## 1.6 Relevant Regulation and Guidance

This PFAS DSI has been developed considering the following legislation and guidance.

- DES, Queensland Auditor Handbook for Contaminated Land, Module 6: Content requirements for contaminated land investigation documents, certifications and audit reports (2018)
- Environmental Protection Act, 1994
- HEPA (2018) PFAS National Environmental Management Plan (NEMP)
- NEPC (1999) National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013) (ASC NEPM 2013)
  - Schedule A- Recommended general process for assessment of site contamination
  - Schedule B1 Guideline on Investigation Levels for Soil and Groundwater
  - Schedule B2 Guideline on Site Characterisation
  - Schedule B3 Guideline on Laboratory Analysis of Potentially Contaminated Soils
- Standards Australia (AS4482.1-2005) Guide to the sampling and investigation of potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds
- Standards Australia (AS 4482.2-1999) Guide to the sampling and investigation of potentially contaminated soil, Part 2: Volatile Substances.

A summary of guideline values adopted for this investigation is presented in **Section 5.0**.

## 2.0 Site Setting

#### 2.1 Site Identification

Home Hill Fire Station is located in central Home Hill and is accessed via Tenth Avenue or Eleventh Avenue. Site identification details as identified in the PSI (AECOM, 2019) are shown in **Table 2**.

Table 2 Home Hill Fire Station Site Identification

| Item                                                                                                                                                                           | Details                                                                                                                                                                                              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Site Address                                                                                                                                                                   | 83 Tenth Avenue, Home Hill, 4806                                                                                                                                                                     |  |
| Registered Site Owner                                                                                                                                                          | Lot 6 / H616666 and Lot 8 / SP123356 are owned by The State of Queensland. (Represented by Department of Community Safety, now Public Safety Business Agency)*.                                      |  |
| Registered Address of<br>Site Owner                                                                                                                                            | Public Safety Business Agency, L13 Makerston House, 30 Makerston Street, Brisbane, Queensland, 4000                                                                                                  |  |
| Site Occupier                                                                                                                                                                  | QFES                                                                                                                                                                                                 |  |
| Local Government Area                                                                                                                                                          | Burdekin Shire Council                                                                                                                                                                               |  |
| Zoning                                                                                                                                                                         | Public Purpose                                                                                                                                                                                       |  |
| Future Zoning                                                                                                                                                                  | No change                                                                                                                                                                                            |  |
| Lot and Plan                                                                                                                                                                   | Lot 6 / H616666 and Lot 8 / SP123356 The site is shared with Queensland Ambulance Service (QAS).                                                                                                     |  |
| Tenure                                                                                                                                                                         | Freehold                                                                                                                                                                                             |  |
| Latitude / Longitude                                                                                                                                                           | -19.66099 / 147.41598                                                                                                                                                                                |  |
| Site Area                                                                                                                                                                      | 1,811m²                                                                                                                                                                                              |  |
| Current / Future Site Use                                                                                                                                                      | Current and future site use is as a fire station (i.e. commercial/industrial land use).                                                                                                              |  |
| Environmental<br>Management Register<br>(EMR) / Contaminated<br>Land Register (CLR)                                                                                            | A search of the DES EMR and CLR for the two lots (Lot 6 / H616666 and Lot 8 / SP123356) conducted as part of the PSI (AECOM, 2019) indicated that the site is not included on either the EMR or CLR. |  |
| Environmentally relevant activities or notifiable activities at the site.  The PSI did not identify any environmentally relevant activities notifiable activities at the site. |                                                                                                                                                                                                      |  |

<sup>\*</sup> The adjacent lot, Lot 7 on H616103, is occupied by State Emergency Service (SES) and is partially fenced from the other two lots (a fence is present marking the boundary along the southern boundary of the western portion of the site). Burdekin Shire Council is the registered Trustee for this lot.

#### 2.2 Site Layout and Features

The site layout is detailed on **Figure 2**, **Appendix A**. The site is rectangular with its long axis orientated northeast to southwest. The site is not permanently staffed and is shared with QAS. There are two main buildings located on site; the old fire station building (pre-2002) in the eastern portion of the site and the current fire station building in the western portion of the site, which consists of the Engine Room and offices. A storage shed used by QAS is present in the western central portion of the site. There is a storage area for wrecked cars / awning and slab to the east of the offices.

The fire station is crewed by approximately eight auxiliary firefighters with all training activities conducted on the open grassed area in the central portion of the site (refer to **Figure 2**, **Appendix A**). A concrete in-ground water tank (Case 4 Pit), with dimensions of 900 mm diameter x 2400 mm deep

and a capacity of 1530 L, is located adjacent to the western side of the old fire station building. The pit was used for pump testing and water drafting training. Sampling and analysis of the water in the Case 4 Pit occurred in 2016 and indicated the presence of trace PFAS concentrations, see **Section 2.4**. The Case 4 Pit was covered by a steel plate to prevent water ingress and has since been decommissioned (sometime between 2016 and 2018) and backfilled with sand. Water drafting training is now undertaken in a semi-permanent water tank located adjacent to the Engine Room.

Stormwater drainage includes two subsurface drains in the western portion of the site, one of the drainage lines runs from the open area east of the Engine Room, towards the south and then southwest, along the southern site boundary to Tenth Avenue. There is a drainage pit adjacent to the northern site boundary in the western portion of the site, with a stormwater drain running westwards to Tenth Avenue. A depression is present along the southern boundary where surface water flows may potentially occur. There are no stormwater drainage lines in the central and eastern portions of the site. A surface depression is located in the grassed area used for foam training in the centre of the site.

A number of underground services are present at the site including sewer lines, electrical and communications lines, hydrant water lines and town water connections to buildings (refer to **Figure 2**, **Appendix A**). The material used to infill around these services is likely to consist of bedding sands which have the potential to act as preferential pathways for contaminant migration in the unsaturated zone, in areas where clay is the dominant soil. Backfill around the Case 4 Pit also has the potential to act as a preferential pathway. No information was identified in the PSI (AECOM, 2019) on the potential emplacement of fill at the fire station.

Vegetation is present on approximately 60% of the site, with the remainder sealed with concrete.

The adjacent SES lot (Lot 7 on H616103) is present to the south of the eastern portion of the site and contains a building and a storage shed, which were constructed between 1970 and 1975.

## 2.3 Surrounding Land Use

The site is within an urban area surrounded by commercial and residential properties. Eleventh Avenue is located adjacent to the northeastern site boundary with Tenth Avenue present adjacent to the southwestern site boundary. Details of surrounding land uses are provided in **Table 3** below.

Table 3 Home Hill Fire Station Surrounding Land Use

| Direction | Land Use                                                                                                                                                                                                                                                                                                                           |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Southwest | Tenth Avenue bounds the site to the southwest. A Memorial Park and bowls club is present on the western side of Tenth Avenue with commercial properties further beyond. Beyond Tenth Avenue to the south-southwest is a residential property and Burdekin Memorial Hall with further commercial and residential properties beyond. |
| Southeast | Adjacent to the site to the southeast are SES storage shed / buildings which are located within the cadastral property boundary and beyond the immediate site boundary. Beyond the SES land are buildings associated with the Home Hill Health Centre, beyond which are residential properties.                                    |
| Northeast | Adjacent to the site to the northeast is Eleventh Avenue, beyond which are residential properties (approximately 20-30 m).                                                                                                                                                                                                         |
| Northwest | Adjacent to the site to the northwest is RSL Park and a residential property and then Tenth Street. Beyond Tenth Street to the northwest are mainly residential properties with some commercial properties. A service station (Michelle's Caravan Park and Service Station) is located approximately 400 m to the northwest.       |

## 2.4 Previous Environmental Investigation

A PFAS PSI was completed in March 2019 (AECOM, 2019). The key findings of this investigation are summarised below.

- Based on aerial photographs, the site was developed in the mid to late 1960s with the current fire station building built in the late 1990s/early 2000s. Prior to development in the 1960s, the site was unoccupied, and the land use is not known. The site is surrounded by commercial and residential properties and recreational land.
- There were a number of buildings present on the site between the 1960s and 1990s before the
  current fire station building was constructed. The redevelopment of the site may have involved
  excavation and relocation of soil beneath the site, which has the potential to create preferential
  pathways for contaminant migration.
- Based on the interview information, firefighting foams containing PFAS have been present at the site with AFFF (3M Lightwater) used prior to 2003. Since this time, Solberg foam has been used, which is PFAS-free<sup>2</sup>.
- The inventory of foam concentrate in February 2019 was 160 L Solberg foam. Foam concentrate
  is stored in 20 L containers in the ancillary shed to the Engine Room. No infrastructure (e.g. tanks)
  is known to have stored foam. The volume of foam stored at the site was reported to have always
  been low (volume not specified) with drums collected from a larger station (not identified) on an
  as-needed basis.
- Firefighting training using foam has occurred on the grassed area in the centre of the site. The
  volume of foam used has not been specified but was noted to be low due to the cost of the foam
  concentrate. All foams are reportedly used prior to the use by date. No inadvertent releases of
  foam concentrate were identified.
- PFAS was identified in two water samples collected in 2016 (QFES, 2016) from the Case 4 Pit with a concentration of 0.097 μg/L Σ(PFHxS+PFOS) detected. Two samples of tap water were also analysed and PFAS was not detected.
- A high-level review of the area within 4 km of the site identified the potential for off-site sources of PFAS including a sugar mill located approximately 2 km northwest of the site and an industrial unit, located approximately 200 m to the northeast of the site. The adjacent SES property, Lot 7 on H616103, is also considered a potential source.

Revision 0 – 10-Feb-2020 Prepared for – Queensland Fire and Emergency Services – ABN: 93 035 163 778

-

<sup>&</sup>lt;sup>2</sup> Reported by the manufacturer at <a href="https://www.solbergfoam.com/Foam-Concentrates/RE-HEALING-Foam.aspx">https://www.solbergfoam.com/Foam-Concentrates/RE-HEALING-Foam.aspx</a>

## 3.0 Environmental Setting

#### 3.1 Climate

A summary of the monthly climate statistics is presented in **Table 4** below based on information available on the Australian Government Bureau of Meteorology website for the nearest weather station (Ayr DPI Research Station) for the period 1951 to 2019. Home Hill has a tropical climate, characteristic of distinct wet and dry seasons. The wet season occurs between December and April. Mean annual rainfall is 944.7 mm.

Table 4 Summary of Monthly Climate at Ayr DPI Research Station – 1951 to 2019

| Month     | Mean maximum temperature (°C) | Mean minimum temperature (°C) | Mean rainfall (mm) |
|-----------|-------------------------------|-------------------------------|--------------------|
| January   | 31.8                          | 22.8                          | 216.4              |
| February  | 31.6                          | 22.8                          | 235.3              |
| March     | 30.9                          | 21.6                          | 155.0              |
| April     | 29.6                          | 19.0                          | 46.8               |
| May       | 27.7                          | 16.2                          | 40.2               |
| June      | 25.5                          | 13.0                          | 24.0               |
| July      | 25.2                          | 11.8                          | 15.2               |
| August    | 26.3                          | 12.7                          | 15.3               |
| September | 28.2                          | 15.1                          | 9.8                |
| October   | 29.9                          | 18.1                          | 26.7               |
| November  | 31.2                          | 20.6                          | 45.0               |
| December  | 32.1                          | 22.1                          | 99.8               |

## 3.2 Site Topography

Contour mapping from Queensland Globe online interactive mapping indicates the site is relatively flat, between 10 and 20 m above sea level.

During the site inspection in the PSI, a depression was noted to be present along the southern site boundary, where surface water flows may potentially occur. There was no equivalent along the northern site boundary. Subsurface stormwater drains are present in the western portion of the site and these drain to the west towards Tenth Avenue. A surface depression is located in the grassed area at the centre of the site at the location of the foam training area.

## 3.3 Soil Type and Acid Sulfate Soils (ASS)

Mapping from the Australian Soil Resources Information System (ASRIS) indicated the site is underlain by Anthroposols which are soils which have been modified or constructed by humans.

Mapping from ASRIS indicates that there is an extremely low probability of occurrence of ASS.

#### 3.4 Geology

Geological mapping (Queensland Globe) indicates that the majority of the site is underlain by Quaternary flood plain alluvium, comprising clay, silt, sand and gravel.

The bore card for the closest registered bore to the site (RN186025, located 220 m to the south) indicates the geology beneath the site comprises topsoil, underlain by red silts and coarse brown sands.

## 3.5 Hydrology

The site is located within the flood plain of the Burdekin River. The closest water feature to the site is a drain, located approximately 225 m to the south of the site, which runs to the southeast then east. Another drain is situated approximately 650 m north of the site, which flows in an easterly direction and appears to discharge into a reservoir located approximately 4 km northeast of the site. A pond is present approximately 850 m to the southwest with an associated drainage line that runs to the northwest from the pond.

The Burdekin River is approximately 3 km north of the site and is the major hydrological feature in the area. This river flows from west to east discharging into the Coral Sea. The mouth of the Burdekin River is approximately 10 km to the east of the site.

Burdekin Regional Council online interactive mapping indicates the site and adjacent land is not within the Storm Tide Evacuation Zone.

## 3.6 Hydrogeology

The Groundwater Resources of Queensland 1:2,500,000 mapping indicates the aquifer beneath the site to comprise unconsolidated sediments, with a yield of >15 L/s and salinity of 500 to 1500 mg/L. The groundwater is noted to be suitable for most purposes and marginal for human consumption, and low tolerant crops. Based on the proximity of the surface water features (Burdekin River) to the site, the inferred groundwater flow direction beneath the site is to the north/northeast towards the Burdekin River.

A search of the Department of Natural Resources, Mines and Energy (NRME) registered groundwater bore database was completed in October 2019 and identified 23 bores within 1 km of the site. The registered bore locations are shown on **Figure 1**, **Appendix A**. Five of these bores are identified as abandoned<sup>3</sup>, two are used for monitoring purposes<sup>4</sup> and 16 are used for water supply as identified in **Table 5** below. It is noted that 12 of these bores are located to the north and potentially hydraulically down-gradient of the site and all of the bores are screened in the shallow aquifer with SWL ranging between 5.3 and 10.6 mbgl.

Revision 0 – 10-Feb-2020

<sup>&</sup>lt;sup>3</sup> RN12000540, RN12000541, RN12000542, RN12000018, RN12000019

<sup>&</sup>lt;sup>4</sup> RN12000114, RN166700

Table 5 Registered groundwater bores within 1 km of Home Hill Fire Station

| Bore ID  | Distance and Direction | Screen Depth        | Additional Comments / Use if Known |
|----------|------------------------|---------------------|------------------------------------|
| RN186025 | 220 m south            | 19 to 20.1 mbgl     | Water supply, SWL 9.7 mbgl         |
| RN175675 | 370 m northeast        | 18.8 to 20.0 mbgl   | Water supply, SWL 9.5 mbgl         |
| RN175547 | 390 m northeast        | 18.9 to 20.12 mbgl  | Water supply, SWL 9.5 mbgl         |
| RN175674 | 420 m northeast        | 18.8 to 20.0 mbgl   | Water supply, SWL 10.3 mbgl        |
| EN175546 | 460 m northeast        | 18.8 to 20.12 mbgl  | Water supply, SWL 9.5 mbgl         |
| RN153225 | 490 m north            | 15.15 to 16.15 mbgl | Water supply, SWL 6.5 mbgl         |
| RN175676 | 500 m southeast        | 19.0 to 20.2 mbgl   | Water supply, SWL 9.3 mbgl         |
| RN96585  | 600 m south            | 13.4 to 14.0 mbgl   | Water supply, SWL not listed       |
| RN102089 | 570 m north            | 17.2 to 17.8 mbgl   | Water supply, SWL 10.2 mbgl        |
| RN125935 | 620 m north            | 16.9 to 18.5 mbgl   | Water supply, SWL 10.1 mbgl        |
| RN102765 | 650 m northeast        | 17.0 to 18.0 mbgl   | Water supply, SWL 10.2 mbgl        |
| RN140881 | 750 m northeast        | 13.3 to 18.3 mbgl   | Water supply, SWL 5.3 mbgl         |
| RN125929 | 850 m west             | 15.3 to 16.8 mbgl   | Water supply, SWL 10.5 mbgl        |
| RN175972 | 870 m northwest        | 12.6 to 13.6 mbgl   | Water supply, SWL10.6 mbgl         |
| RN125096 | 830 m northwest        | 16.0 to 17.5 mbgl   | Water supply, SWL 10.9 mbgl        |
| RN102145 | 960 m north            | 12.0 to 18.0 mbgl   | Water supply, SWL not listed       |

#### 3.7 Environmental Values

Environmental values (EVs) and water quality objectives are not yet defined for the Haughton Basin area under EPP Water and are under development. As per DES guidance, in areas where no water quality objectives are scheduled, the Queensland water quality guidelines apply as default objectives. The surface water environmental values considered therefore include: aquatic ecosystems, irrigation, farm supply / use, stockwater, aquaculture, human consumer, primary recreation, secondary recreation, visual recreation, drinking water, industrial use, cultural and spiritual values.

## 3.8 Groundwater Dependent Ecosystems and Environmentally Sensitive Areas

A search of the Groundwater Dependent Ecosystems (GDE) database<sup>5</sup> indicated the following aquatic ecosystems are present within 4 km of the site: Wetland at Burdekin River – moderate potential GDE. No subterranean and terrestrial GDEs were identified.

A search of the Environmentally Sensitive Areas (ESAs) database<sup>6</sup> indicated the site is within a Category C river improvement area. Areas to the north of the site along the Burdekin River are classed as Category B endangered regional ecosystems (biodiversity status).

<sup>&</sup>lt;sup>5</sup> http://www.bom.gov.au/water/groundwater/gde/map.shtml

<sup>6</sup> https://environment.des.qld.gov.au/licences-permits/maps of environmentally sensitive areas.php

## 4.0 Fieldwork- DSI

#### 4.1 Overview

Fieldwork was completed between July and August 2019 in accordance with the SAQP dated April 2019 (AECOM, 2019). Details of the tasks completed are shown in **Table 6**.

Table 6 Summary of Fieldwork

| Activity                                                                                                                                                           | Dates             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Service clearance survey at proposed soil bore locations.                                                                                                          | 22 July 2019      |
| Drilling of four soil bores (HH_BH01 to HH_BH04), collection of soil samples, conversion to groundwater monitoring wells (HH_MW01 to HH_MW04), well development    | 24 – 25 July 2019 |
| Advancement of four shallow soil bores (HH_SS1 to HH_SS4) and collection of soil samples                                                                           | 24 - 25 July 2019 |
| Gauging and collection of groundwater samples from the four newly installed wells (HH_MW01 to HH_MW04). Collection of two sediment samples (HH_SED01 and HH_SED02) | 06 August 2019    |
| Surveying of the groundwater wells                                                                                                                                 | 06 August 2019    |

Co-located surface water and sediment samples were to be collected from the on-site drainage lines, however, as water was not present at the time of sampling, only sediment samples were collected.

## 4.2 Sampling Rationale

An overview of the rationale for sampling locations is presented in **Table 7**. The sampling locations are shown on **Figure 2**, **Appendix A**. The coordinates of sampling positions are shown in **Table T1**, **Appendix B**. Photographs taken during the fieldworks are shown in **Appendix C**.

Table 7 Sampling Rationale

| Location ID           | Location/Rationale                                                                                                                                                          |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HH_BH01 /<br>HH_MW01  | To investigate soil and groundwater quality in the central western portion of the site potentially hydraulically cross-gradient of the foam training area.                  |
| HH_BH02 /<br>HH_MW02  | To investigate soil and groundwater quality in the central portion of the site within the foam training area and the surface depression.                                    |
| HH_BH03 /<br>HH_MW03  | To investigate soil and groundwater quality in the eastern portion of the site adjacent to, and southwest of, the Case 4 Pit.                                               |
| HH_BH04 /<br>HH_MW04  | To investigate soil and groundwater quality in the central portion of the site, to the south, and potentially hydraulically up-gradient of the area used for foam training. |
| HH_SS1                | To investigate the potential for PFAS in shallow soil in an unsealed area in the central northern portion of the site adjacent to the foam training area.                   |
| HH_SS2 to<br>HH_SS4   | To investigate the potential for PFAS in shallow soil in an unsealed area in the northern central portion of the site where foam training occurred.                         |
| HH_SED01,<br>HH_SED02 | To investigate the potential for PFAS in sediment in drainage lines along the southern (SED01) and northern (SED02) site boundaries.                                        |

Due to the ubiquity of PFAS used in a variety of everyday products and the potential for cross contamination during sampling activities, the recommended mitigation practices identified in the NEMP (HEPA, 2018) and Western Australia's Department of Environmental Regulation (2017) were implemented during the sampling program as stipulated in the SAQP (AECOM, 2019). Further details on the quality assurance / quality control (QA/QC) practices employed are provided in **Appendix G**.

## 4.2.1 Soil Investigation

Sampling methodologies and details relating to laboratory analysis of samples are described in the SAQP (AECOM, 2019). The soil investigation methodology is described in **Table 8**.

Table 8 Soil Investigation Methodology

| Activity/Item                    | <b>Details</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Service location                 | AECOM obtained on-site utility plans and Dial-Before-You-Dig plans before the start of the works. A contractor (Copp and Co Civil & Plant Hire Pty Ltd) conducted service location and cleared proposed bore locations for services. Concrete coring was conducted at one location (HH_BH04). All soil bores were advanced by non-destructive digging (vacuum extraction using a water lance) to 1.5 mbgl to confirm the absence / presence of underground utilities.                                                                                                                                                                                                                                                                                                                                      |
| Drilling method and target depth | Soil bores (for conversion to groundwater monitoring wells) were advanced by a contractor (Proactive Drilling Services Pty Ltd) with a Geoprobe drilling rig using solid stem augers to the target depth (approximately 10 mbgl). HH_SS1 and HH_SS3 were advanced using a hand auger to the target depth of 0.5 mbgl. HH_SS2 and HH_SS4 were surface samples only (approximately 0.1 mbgl) collected with a hand auger.                                                                                                                                                                                                                                                                                                                                                                                    |
| Soil logging                     | Soil logging was in accordance with the unified soil classification system (USCS) and AS1726-2016. The soil profile(s) encountered are provided in bore logs in <b>Appendix D</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Soil sampling                    | During drilling, samples were obtained at the depths specified in the SAQP. To reduce the likelihood of cross contamination, soil samples were collected using new nitrile gloves and placed into laboratory prepared PFAS sample containers. Sample jars were filled to the top and securely sealed. The field QA/QC samples comprised intra-laboratory duplicate samples, interlaboratory duplicate samples and rinsate blank samples.                                                                                                                                                                                                                                                                                                                                                                   |
| Soil sample preservation         | During collection in the field, soil samples were placed in eskies kept cool with bagged ice prior to air transport to the laboratory. Samples were submitted with chain of custody documentation to a laboratory NATA accredited for the analysis performed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Decontamination procedures       | The decontamination procedures were performed before initial use of reuseable equipment and after each subsequent use.  All reusable sampling equipment was decontaminated between each sample by scrubbing in a solution of Liquinox <sup>7</sup> and potable water before being rinsed in PFAS-free distilled water. For each day of sampling, following decontamination procedures, a rinsate blank was completed by running laboratory prepared rinsate water over the reusable sampling equipment for collection directly into laboratory prepared sampling containers for analysis. At each sample location, a new set of disposable nitrile gloves was used to directly collect soil samples from the re-useable sampling equipment for placement into the laboratory prepared sampling containers. |
| Disposal of waste                | Waste soil generated during the drilling was disposed of into 205 L drums for temporarily storage in an area nominated by QFES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

<sup>&</sup>lt;sup>7</sup> Further information on PFAS-free status of Liquinox is provided at <a href="http://technotes.alconox.com/industry/laboratory/manual-lab-cleaning/pfoa-pfos-pfas-alconox-cleaners/">http://technotes.alconox.com/industry/laboratory/manual-lab-cleaning/pfoa-pfos-pfas-alconox-cleaners/</a>

Revision 0 – 10-Feb-2020

#### 4.2.2 **Groundwater Investigation**

The groundwater investigation methodology is described in **Table 9**.

Table 9 **Groundwater Investigation Methodology** 

| Activity                           | <b>Details</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monitoring<br>well<br>installation | Monitoring well construction comprised a 50 mm diameter uPVC screen and casing with screw fittings, installed in an approximately 150 mm diameter bore. All four wells were installed to approximately 10 mbgl. Screen length varied between wells dependent on water strike. Screened sections were installed in a gravel filter pack to 0.5 m above the top of the screen and isolated with a 1 m thick bentonite seal. Each well was fitted with a flush mounted gatic and secured into position with concrete. A water tight enviro-cap was installed on the top of each well casing to prevent accidental blockage of the well. |
| Well<br>development                | Wells were developed following installation using a foot pump. The wells were purged until the extracted water was 'clearing' and field parameters were stabilised. Monitoring well construction details can be found in <b>Table T1</b> , <b>Appendix B</b> .                                                                                                                                                                                                                                                                                                                                                                       |
| Well gauging                       | Monitoring wells were gauged using an oil/water interface probe. The results of groundwater level gauging are presented in <b>Table T2</b> , <b>Appendix B</b> . The field sheets and calibration certificates are provided in <b>Appendix E</b> .                                                                                                                                                                                                                                                                                                                                                                                   |
| Field<br>Parameters                | Groundwater physicochemical properties were measured in the field prior to sample collection using a calibrated YSI water quality meter. Groundwater pH, temperature, electrical conductivity, redox potential and dissolved oxygen concentrations were measured. Groundwater physicochemical parameters are presented in <b>Table T3</b> , <b>Appendix B</b> . Water quality meter calibration certificates are presented in <b>Appendix E</b> .                                                                                                                                                                                    |
| Groundwater sampling               | The groundwater sampling procedure is described in detail in the SAQP (AECOM, 2019). Groundwater samples were collected from each monitoring well using a low flow peristaltic pump in accordance with Australian Standard AS5667.11 (1998) and the AECOM Standard Operating Procedure (SOP). Samples were obtained following stabilisation of field parameters and standing water level. The field QA/QC samples comprised intra-laboratory duplicate samples, inter-laboratory duplicate samples, and rinsate blank samples.                                                                                                       |
| Sample preservation                | During collection in the field, samples were placed into the appropriate laboratory-supplied containers and placed in an esky, which was kept cool with bagged ice before being delivered to the laboratory. Samples were submitted with chain of custody documentation to a laboratory NATA accredited for the analysis requested.                                                                                                                                                                                                                                                                                                  |
| Decontamination procedures         | The oil/water interface probe and peristaltic pump were decontaminated by scrubbing in a solution of Liquinox <sup>8</sup> and potable water before rinsing with PFAS-free distilled water between each groundwater well. A rinsate sample was collected from either the interface probe or peristaltic pump each day of sampling. Dedicated tubing was used for during the monitoring of each well to minimise the potential for cross-contamination and appropriate silicone and HDPE tubing was used which is PFAS-free. A new pair of nitrile gloves were used for each well sampled.                                            |
| Disposal of waste                  | Purged groundwater was disposed of into a 205 L waste drum, which was temporarily stored in an area nominated by QFES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Surveying                          | Surveying of newly installed groundwater wells was completed by Veris Australia Pty Ltd. The surveying report is presented in <b>Appendix F</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Revision 0 – 10-Feb-2020 Prepared for – Queensland Fire and Emergency Services – ABN: 93 035 163 778

<sup>&</sup>lt;sup>8</sup> Further information on PFAS-free status of Liquinox is provided at <a href="http://technotes.alconox.com/industry/laboratory/manual-">http://technotes.alconox.com/industry/laboratory/manual-</a> lab-cleaning/pfoa-pfos-pfas-alconox-cleaners/

#### 4.2.3 Sediment Investigation

The sediment sampling methodology is summarised in **Table 10**.

Table 10 Sediment Investigation Methodology

| Activity            | <b>Details</b>                                                                                                                                                                                                                                             |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sediment sampling   | On-site sediment samples were collected using a gloved hand placing samples directly into laboratory sample jars. At each location the sample jar was filled to the top to ensure no headspace and the cap was immediately applied.                        |
| Sample preservation | Samples were placed into the appropriate laboratory-supplied containers and placed in an esky, which was kept cool with bagged ice. Samples were submitted with chain-of-custody documentation to a laboratory NATA accredited for the analysis performed. |
| Decontamination     | A new pair of disposable nitrile gloves was used to collect each sediment sample to avoid the potential for cross contamination.                                                                                                                           |

## 4.3 Laboratory Analysis and Quality Assurance / Quality Control

A summary of samples analysed for this DSI is shown in **Table 11**. The laboratory analyses were conducted by Australian Laboratory Services (ALS) (primary laboratory) and National Measurement Institute (NMI) (secondary laboratory).

Table 11 Summary of Laboratory Analyses

| Sample Media | Number of primary samples analysed for PFAS | No of duplicate samples | No of triplicate samples | No of rinsate samples |
|--------------|---------------------------------------------|-------------------------|--------------------------|-----------------------|
| Soil         | 18                                          | 2                       | 2                        | 3                     |
| Groundwater  | 4                                           | 1                       | 1                        | 1                     |
| Sediment     | 2                                           | 1                       | 1                        | 1                     |

#### 4.3.1 Data Quality Objectives and Analytical Data Validation

The National Environment Protection (Assessment of Site Contamination) Measure (as amended 2013) (ASC NEPM) Schedule B2 Guideline on-Site Characterisation specifies that the nature and quality of the data produced in an investigation should be determined by the data quality objectives (DQO). As referenced by the ASC NEPM, the DQO process is detailed in the United States Environmental Protection Agency (US EPA, 2006) *Guidance on Systematic Planning Using the Data Quality Objectives Process (EPA QA/G-4 : EPA/240/B-06/001)*, February 2006. The DQOs were specified within the SAQP and are presented in **Appendix G**. AECOM has undertaken a review of the laboratory analytical results for quality control purposes; the results of the data validation process are presented in **Appendix G** and the laboratory quality control reports are included in **Appendix H**. In summary, while some non-conformances have been identified, these are considered of minor importance and it is concluded that the dataset presented in this report is suitable for use.

## 5.0 Assessment Criteria

**Section 3.7** identified that EVs and water quality objectives are not yet defined for the Haughton Basin area under EPP Water and are under development. As per DES guidance, in areas where no water quality objectives are scheduled, the Queensland water quality guidelines apply as default objectives.

The guidelines values relevant for the site that have been adopted for this investigation are identified in **Table 12**. The guideline values are considered to provide a suitable level of protection for all EVs identified (refer to **Section 3.7**).

Table 12 Adopted investigation levels for PFAS

| Media                          | Environmental Value                                                   | PFAS                  | Guideline Value           |
|--------------------------------|-----------------------------------------------------------------------|-----------------------|---------------------------|
|                                | Human health- industrial /                                            | ∑(PFHxS+PFOS)         | 20 mg/kg <sup>A</sup>     |
|                                | commercial landuse                                                    | PFOA                  | 50 mg/kg <sup>A</sup>     |
| Soil                           | Ecosystems- interim soil – ecological indirect exposure (residential) | DEOC                  | 0.01 mg/kg <sup>A</sup>   |
|                                | Ecosystems- interim soil – ecological indirect exposure (commercial)  | PFOS                  | 0.140 mg/kg <sup>A</sup>  |
|                                |                                                                       | $\Sigma$ (PFHxS+PFOS) | 0.07 μg/L <sup>A</sup>    |
| Groundwater                    | Human health- drinking water                                          | PFOA                  | 0.56 μg/L <sup>A</sup>    |
|                                |                                                                       | PFOS                  | 0.00023 μg/L <sup>A</sup> |
| Groundwater                    | Aquatic ecosystem protection (99% species protection)                 | PFOS                  | 0.051 μg/L <sup>B</sup>   |
| discharging to surface water / |                                                                       | PFOA                  | 19 μg/L <sup>A</sup>      |
| surface water                  | Human health- recreational                                            | ∑(PFHxS+PFOS)         | 2.0 μg/L <sup>c</sup>     |
|                                | contact with waters                                                   | PFOA                  | 10 μg/L <sup>C</sup>      |
| Sediment                       | No Criteria                                                           | -                     | -                         |

#### Notes:

## A - NEMP (HEPA, 2018)

B-It is noted, that the NEMP (HEPA, 2018) 99% species protection guideline value for PFOS (0.00023 µg/L) is below the laboratory limit of reporting (LOR) and that the CSIRO has undertaken work to further review the draft freshwater criteria presented in the HEPA (2018) NEMP. The revised draft guideline values for PFOS were presented in Batley et al., 2018, Application of revised methodologies for default guideline value derivations: PFOS in freshwater at the Society of Environmental Toxicology and Chemistry (SETAC) North America scientific conference in November 2018. AECOM understands, through discussions with CSIRO, that these values are currently being further revised to consider more recent ecotoxicity testing results and the updated statistical interpretation methodology recommended in ANZG (2018). In the interim, both the draft freshwater criteria from the HEPA (2018) NEMP and the draft revised criteria proposed by Batley et al (2018) will be used to evaluate the data.

C- Australian Government National Health and Medical Research Council (2019), Guidance on Per and Polyfluoroalkyl substances in Recreational Water. Values are for recreational activities in natural waters only and not applicable for water extracted to fill swimming pools.

## 6.0 Results

#### 6.1 Soil Conditions

The bore logs for the four deep soil bores (HH\_BH01 to HH\_BH04) and four shallow soil bores (HH\_SS1 to HH\_SS4) drilled in July 2019 are shown in **Appendix D**. Soil bores HH\_BH01 to HH\_BH04 were drilled to 10 mbgl, HH\_SS1 and HH\_SS3 were hand augured to 0.5 mbgl and HH\_SS2 and HH\_SS4 were hand auger samples collected from approximately 0.1 mbgl.

Soil conditions consisted of silty sand fill material up to 0.8 mbgl (reworked anthroposols) underlain by sand with gravel inclusions and silty/sandy clay lenses. The soil profile is considered indicative of a shallow horizon of anthroposols underlain by natural Quaternary flood plain alluvium.

There was no visual or olfactory indication of contamination in the soil samples during the drilling.

#### 6.2 Hydrogeology

#### 6.2.1 Observations during Drilling

Groundwater was encountered within the natural sand horizon in the deep soil bores HH\_BH01 to HH\_BH04. Groundwater was encountered at 8.4 mbgl in all four monitoring wells as shown on the bore logs in **Appendix D** and in **Table T1**, **Appendix B**.

#### 6.2.2 Groundwater Elevations and Groundwater Flow Direction

The four groundwater monitoring wells sampled during this investigation were gauged before groundwater samples were collected. The standing water levels (SWLs in metres below top of casing [mbtoc]) were between 8.00 and 8.37 mbtoc. The groundwater elevations were between 4.08 and 4.10 m AHD. The SWLs and groundwater elevations are presented in **Table T2**, **Appendix B**.

The inferred groundwater contours and local groundwater flow direction at the fire station are shown on **Figure 3**, **Appendix A**. Based on the available data, groundwater is inferred to locally flow towards the north/northeast however it is noted that the lateral groundwater (i.e. east – west) dataset is limited.

#### 6.2.3 Water Quality Parameters

**Table T3**, **Appendix B** presents the field water quality parameter results collected during the groundwater monitoring event. The raw data were recorded on the field sheets presented in **Appendix E**. Water quality results are presented in **Table 13**.

Table 13 Groundwater Quality Parameter Results

| Parameter                        | Units | MW01<br>6/08/2019 | MW02<br>6/08/2019 | MW03<br>6/08/2019 | MW04<br>6/08/2019 |
|----------------------------------|-------|-------------------|-------------------|-------------------|-------------------|
|                                  |       |                   |                   |                   |                   |
| pН                               |       | 6.39              | 6.50              | 6.39              | 6.46              |
| Temperature                      | °C    | 27.7              | 27.8              | 27.7              | 28.3              |
| Electrical Conductivity          | μS/cm | 467.5             | 677.0             | 536.0             | 610.0             |
| Total Dissolved Solids           | mg/L  | 303.9             | 440.1             | 348.4             | 396.5             |
| Dissolved Oxygen                 | mg/L  | 5.2               | 4.96              | 3.46              | 4.36              |
| Oxidation Reduction<br>Potential | mV    | 343.9             | 348.9             | 357.1             | 353.4             |

The results indicate that the groundwater is slightly acidic, fresh, moderately oxygenated with mildly reducing conditions.

#### 6.2.4 Groundwater Field Observations

There was no visual or olfactory indication of contamination in the monitoring wells during the groundwater monitoring, including no identification of non-aqueous phase liquids, foaming or odours.

## 6.3 Analytical Results

#### 6.3.1 Soil

The soil analytical results are presented in **Table T4**, **Appendix B** and on **Figure 4**, **Appendix A**. The laboratory analytical reports are presented in **Appendix H**. PFAS was detected in all 18 soil samples analysed.

There were no exceedances of the human health guideline values for commercial land use in the soil samples analysed. A summary of the results in comparison against the adopted human health guideline values is presented in **Table 14**.

Table 14 Summary of PFAS Soil Analytical Results and Assessment with Human Health Guideline Values

| Com-<br>pound     | No. of samples analysed | No. of samples >LOR* | Max.<br>concentration<br>(mg/kg) | Human health<br>guideline<br>value (mg/kg) | No. of samples exceeding human health guideline value |  |
|-------------------|-------------------------|----------------------|----------------------------------|--------------------------------------------|-------------------------------------------------------|--|
| ∑(PFHxS<br>+PFOS) | 18                      | 18                   | 0.223                            | 20                                         | 0                                                     |  |
| PFOS              | 18                      | 18                   | 0.223                            | No guideline value                         |                                                       |  |
| PFOA              | 18                      | 8                    | 0.0009                           | 50                                         | 0                                                     |  |
| Sum of<br>PFAS    | 18                      | 18                   | 0.227                            | No guideline valu                          | Je                                                    |  |

<sup>\*</sup>LOR = limit of reporting

A summary of the results in comparison against the adopted ecological guideline values is presented in **Table 15**.

There was one exceedance of the ecological guideline value for PFOS for indirect exposure for commercial land use. The exceedance was reported at HH\_SS1\_0.5 (0.223 mg/kg). The samples were collected to the northeast of the foam training area.

A comparison of PFAS concentrations to the residential land use ecological guidelines for indirect exposure was also performed, as the central and western portion of the site contains open ground/grassed areas where secondary consumers such as insectivorous birds and mammals may forage. This is a conservative approach, as it is considered that the wildlife would be transient in nature due to the urbanised setting of the site. There were nine exceedances of the ecological guideline value for PFOS for indirect exposure for residential land-use (not including duplicate and triplicate results). A summary of the results in comparison against the ecological criteria is presented in **Table 15**.

Table 15 Summary of PFAS Soil Analytical Results and Assessment with Ecological Guideline Values

| Com-<br>pound     | No. of samples analysed | No. of<br>sam-<br>ples<br>>LOR* | Max.<br>concen-<br>tration<br>(mg/kg) | Ecological<br>guideline<br>value<br>commercial /<br>residential<br>(mg/kg) | No. of samples exceeding of commercial guideline value | No. of samples exceeding of residential guideline value |
|-------------------|-------------------------|---------------------------------|---------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|
| ∑(PFHxS<br>+PFOS) | 18                      | 18                              | 0.223                                 | No guideline value                                                         | No guideline value                                     | No guideline value                                      |
| PFOS              | 18                      | 18                              | 0.223                                 | 0.14 / 0.01                                                                | 1                                                      | 9                                                       |
| PFOA              | 18                      | 8                               | 0.0009                                | No guideline value                                                         | No guideline value                                     | No guideline value                                      |
| Sum of<br>PFAS    | 18                      | 18                              | 0.227                                 | No guideline value                                                         | No guideline value                                     | No guideline value                                      |

#### 6.3.2 Groundwater

The groundwater analytical results for samples collected from monitoring wells are presented in **Appendix B.** The laboratory analytical reports are presented in **Appendix H.** A summary of the assessment of the results with human health guideline values is presented in **Table 16** below.

Table 16 Assessment of Groundwater Results with Human Health Guideline Values

| Compound          | No. of samples analysed | No. of samples >LOR | Maximum<br>con-<br>centration<br>(µg/L) | Adopted drinking water / recreational water guideline value | No. of samples exceeding drinking water guideline value | No. of samples exceeding recreationa I water guideline value |
|-------------------|-------------------------|---------------------|-----------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|
| ∑(PFHxS+<br>PFOS) | 4                       | 4                   | 5.10                                    | 0.07 / 2.0                                                  | 4                                                       | 2                                                            |
| PFOA              | 4                       | 4                   | 0.048                                   | 0.56 / 10.0                                                 | 0                                                       | 0                                                            |
| Sum of<br>PFAS    | 4                       | 4                   | 5.46                                    | No guideline                                                |                                                         |                                                              |

The groundwater analytical results for  $\sum$  (PFHxS+PFOS) and PFOA concentrations are presented on **Figure 5**, **Appendix A**. Groundwater samples from all four monitoring wells exceeded the human health guideline values for drinking water for  $\sum$  (PFHxS+PFOS), with the maximum concentration (5.1  $\mu$ g/L) detected in HH\_MW03, located adjacent to the Case 4 Pit. Two of the groundwater samples (HH\_MW02 and HH\_MW03) also exceeded the recreational water guideline value.

The concentrations of PFOA in the four groundwater samples did not exceed the human health guideline value for drinking water.

The concentrations of PFOS in all four groundwater samples exceeded the ecological guideline values for 99% species protection for fresh water in all four samples. There were no exceedances of the adopted ecological guideline values for PFOA.

#### 6.3.3 TOPA

One soil sample and one groundwater sample were also analysed for TOPA to understand the potential presence of PFAS precursors. The results are summarised in **Table 17**.

Table 17 Summary of TOPA Analysis (Soil and Groundwater)

| Sample            | Units | Sum of 28<br>PFAS<br>(standard<br>analysis) | Sum of 28<br>PFAS<br>(TOPA) | Sum of TOP<br>C4-C14<br>Carboxylates<br>and C4-C8<br>Sulfonates | % of Sum of 28<br>TOPA to 28<br>PFAS standard<br>analysis |
|-------------------|-------|---------------------------------------------|-----------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|
| HH_SS1_0.5_190724 | mg/kg | 0.227                                       | 0.159                       | 0.16                                                            | -30%                                                      |
| HH_MW03_190806    | μg/L  | 5.46                                        | 2.57                        | 2.57                                                            | 0%                                                        |

Comparison of the results for the soil sample indicates the sum of 28 PFAS by TOPA was 30% lower than the sum of 28 PFAS by standard analysis. This may indicate depletion of oxidant by compounds other than PFAS. The result is indicative of a degraded PFAS product.

Comparison of the results for the groundwater sample indicates the sum of 28 PFAS by TOPA was equal to the sum of 28 PFAS by standard analysis, suggesting no depletion of oxidant by compounds other than PFAS during the TOPA reaction. The result is indicative of a degraded PFAS product that is unlikely to significantly increase through biotransformation or oxidation processes.

#### 6.3.4 Sediment

The sediment analytical results for samples collected from two on-site drainage lines are presented in **Table T6**, **Appendix B** and on **Figure 6**, **Appendix A**. The laboratory analytical reports are presented in **Appendix H**. A summary of the results is presented in **Table 18** below.

Table 18 Summary of Sediment Results

| Compound      | No. of samples analysed | No. of samples >LOR | Maximum concentration (mg/kg) |
|---------------|-------------------------|---------------------|-------------------------------|
| ∑(PFHxS+PFOS) | 2                       | 2                   | 0.0026                        |
| PFOS          | 2                       | 2                   | 0.0026                        |
| PFOA          | 2                       | 1                   | 0.0002                        |
| Sum of PFAS   | 2                       | 4                   | 0.0026                        |

No suitable criteria are available for assessing human and ecological risk from sediment. The moisture contents of SED01 and SED02 samples were less than 11%. A comparison of soil guideline values for human health or ecological guidelines values (NEMP, 2018) for commercial landuse for PFHxS and PFOS and PFOA indicated there are no exceedances of the guideline values.

## 7.0 Discussion

## 7.1 Geological and Hydrogeological Conditions

#### 7.1.1 Soil Conditions

Based on the soil conditions recorded in the bore logs, the subsurface lithology beneath the site generally comprises of a shallow layer of fill (up to 0.8 mbgl) consisting of re-worked anthroposols, underlain by natural sands with silty/sandy clays to the maximum depth of the investigation (10.0 mbgl).

#### 7.1.2 Hydrogeology

Measured groundwater elevations indicate the presence of a shallow aquifer, with groundwater encountered at 8.4 mbgl across the site. Based on the limited groundwater elevation data (four locations), the inferred contours indicate local groundwater flow is to the north/northeast. This is consistent with the expected regional groundwater flow direction which is likely to be to the north / northeast towards the Burdekin River located approximately 3 km north of the site. Sand is the dominant soil type within the unsaturated and saturated zone.

The foam training area is located in an unsealed area. It is likely that the majority of training exercises completed using AFFF would have resulted in the application of foam directly to the soil surface with subsequent direct infiltration to the subsurface. PFAS infiltration may have occurred vertically through the subsurface fill and silty/sandy clays before moving through the sandy unsaturated zone to the underlying groundwater (saturated zone).

The presence of underground services, particularly the sewer line running south-north through the former foam training area and the Case 4 Pit may create preferential pathways through coarse backfill materials in areas where clay is the main soil type present. However, it is noted that sand is the main soil type generally present so the potential for preferential pathways is likely to be limited.

## 7.2 Soil Analytical Results

The investigation results indicate PFAS ( $\Sigma$ PFHxS+PFOS) concentrations were higher in soil samples from the three soil bores located adjacent to (east, west and north) the area identified as the foam training area in the PSI (AECOM, 2019) compared to the four soil bores from within the foam training area. The soil sample with the highest PFAS concentration was at 0.5 mbgl at soil bore HH\_SS1, located to the east of the former foam training area ( $\Sigma$ (PFHxS+PFOS) was 0.223 mg/kg). This was the deepest soil sample collected from this soil bore. A soil sample from HH\_BH01 (1.0 mbgl) located to the west of the foam training area had 0.027 mg/kg  $\Sigma$ (PFHxS+PFOS), while the sample from HH\_BH04 (0.25 mbgl), located to the south of the foam training area had 0.022 mg/kg  $\Sigma$ (PFHxS+PFOS). This may indicate the use of AFFF was over larger footprint than was identified in the PSI.

PFAS (∑PFHxS+PFOS) concentrations in deeper soil samples from the saturated zone in soil bores within and around the foam training area (HH\_BH01, HH\_BH02 and HH\_BH04) were one to two orders of magnitude lower compared to shallow soils (< 1.0 mbgl) indicating attenuation with depth through the unsaturated soil profile. This is shown graphically in **Chart 1**.

PFAS (∑PFHxS+PFOS) concentrations reported within soil samples from HH\_BH03, located adjacent to the Case 4 Pit area (which was used for firefighting training) are similar at different depths (0.012 mg/kg at 0.1 mbgl, 0.067 mg/kg at 1.0 mbgl and 0.044 mg/kg at 9.0 mbgl) indicating this area to be a potential source of PFAS. The results also indicate the potential for backfill materials around the Case 4 Pit to create a preferential vertical pathway for the migration of PFAS to groundwater.

The maximum  $\sum$ (PFHxS+PFOS) concentration reported in soil samples is two orders of magnitude lower than the NEMP (HEPA, 2018) guideline value for human health for a commercial land use. The results suggest the potential presence of areas with locally elevated PFAS concentrations and this uneven distribution may reflect historical practices of foam application in the foam training area.

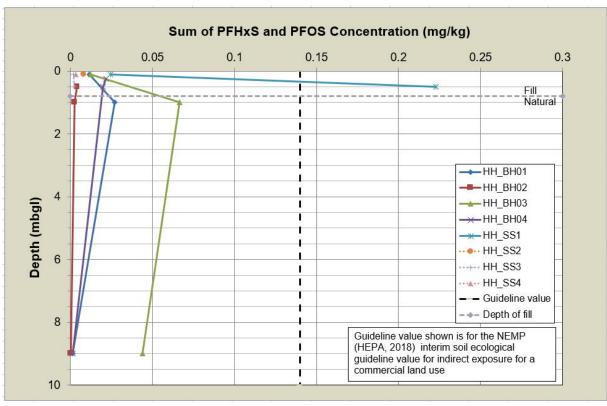



Chart 1 Concentration of ∑(PFHxS+PFOS) with depth in soil bores at Home Hill Fire Station

## 7.3 Groundwater Analytical Results

PFAS was detected in all four monitoring wells (HH\_MW01 and HH\_MW04) with the highest groundwater PFAS concentrations detected at two source areas identified in the PSI (AECOM, 2019):

- adjacent to the Case 4 Pit (HH\_MW03 had 5.1 µg/L ∑(PFHxS+PFOS) located in the east of the site (refer Figure 5, Appendix A) and
- within the foam training area (HH\_MW02 had 3.7 μg/L ∑(PFHxS+PFOS).

Groundwater PFAS concentration in the two monitoring wells that were hydraulically up- and cross-gradient of the former foam training area (HH\_MW04 and HH\_MW01, respectively) were relatively lower with up to 0.5  $\mu$ g/L  $\Sigma$ (PFHxS+PFOS) detected in HH\_MW04.  $\Sigma$ (PFHxS+PFOS) concentrations in groundwater samples from the four wells exceeded the NEMP (HEPA, 2018) guideline value for human health (drinking water) while the concentrations at HH\_MW02 and HH\_MW03 also exceeded the NHMRC human health recreational water guideline value.

As the inferred contours indicate groundwater as sampled at MW02 and MW03 is locally flowing towards the north/northeast within a sand aquifer that is likely to be relatively permeable, there is the potential for PFAS contaminants to migrate off-site at concentrations that exceed human health and ecological guideline values. Due to the limited number of monitoring wells, the extent of PFAS in groundwater has not been established in any direction.

Shorter chain compounds (i.e. compounds with six or fewer perfluorinated carbons) have higher mobility in groundwater relative to longer chain compounds. Due to the main source area (foam training area) being located close to the down-gradient (northwestern) boundary, no monitoring wells were positioned down-gradient of this area and therefore there is limited information on the potential mobility of shorter chain compounds. Groundwater samples from monitoring well HH\_MW03 positioned close to Case 4 Pit where training activities occurred is noted to have the highest concentrations of some shorter chain compounds including PFHxS (0.70  $\mu$ g/L), PFPeS (0.068  $\mu$ g/L) and PFHxA (0.07  $\mu$ g/L). Shorter chain compounds are considered to have a higher potential to migrate in groundwater beyond the down-gradient site boundary.

## 7.4 Comparison of PFAS composition in soil and groundwater samples

Table 19 presents a comparison of the compounds detected in soil and groundwater samples.

Table 19 PFAS Composition in Soil and Groundwater Samples

| PFAS     | Carbon Chain<br>Length | Average soil             | Average<br>groundwater<br>ratio |                     |       |
|----------|------------------------|--------------------------|---------------------------------|---------------------|-------|
|          |                        | 0.1-0.5 mbgl<br>(n = 11) | 1.0 mbgl<br>(n = 3)             | 9.0 mbgl<br>(n = 4) | (n=4) |
| PFBA     | 4                      | 0%                       | 0%                              | 0%                  | 0%    |
| PFBS     | 4                      | 0%                       | 0%                              | 0%                  | 2.1%  |
| PFPeS    | 5                      | 0%                       | 0%                              | 0%                  | 2.3%  |
| PFPeA    | 5                      | 1.0%                     | 2.4%                            | 0%                  | 0.7%  |
| PFHxS    | 6                      | 1.3%                     | 0.5%                            | 24.8%               | 33.8% |
| PFHxA    | 6                      | 0.7%                     | 0.2%                            | 0%                  | 1.8%  |
| 6:2 FTS  | 6                      | 0%                       | 0%                              | 0%                  | 0.1%  |
| PFHpS    | 7                      | 0.4%                     | 0%                              | 0.4%                | 0.7%  |
| PFHpA    | 7                      | 1.9%                     | 0%                              | 0%                  | 1.4%  |
| PFOS     | 8                      | 67.6%                    | 94.4%                           | 74.4%               | 55.7% |
| PFOA     | 8                      | 1.8%                     | 0%                              | 0.4%                | 1.3%  |
| PFNA     | 8                      | 3.2%                     | 2.5%                            | 0%                  | 0.1%  |
| FOSA     | 8                      | 0.3%                     | 0%                              | 0%                  | 0%    |
| 8:2 FTS  | 8                      | 0.4%                     | 0%                              | 0%                  | 0%    |
| PFDS     | 10                     | 1.3%                     | 0%                              | 0%                  | 0%    |
| PFDcA    | 10                     | 7.4%                     | 0%                              | 0%                  | 0%    |
| 10:2 FTS | 10                     | 6.0%                     | 0%                              | 0%                  | 0%    |
| PFUnDA   | 11                     | 5.8%                     | 0%                              | 0%                  | 0%    |
| PFDoDA   | 12                     | 0.8%                     | 0%                              | 0%                  | 0%    |
| PFTrDA   | 12                     | 0.1%                     | 0%                              | 0%                  | 0%    |

**Note:** The average composition has been calculated using all primary soil and groundwater samples.

#### 7.4.1 Soil Profile

**Table 19** shows that the PFAS present in soil samples ranged from short (six perfluorinated carbons) to long chain (twelve perfluorinated carbons). Comparison of the compounds detected indicates a larger range of compounds were detected in the shallower depth interval (0.1 to 0.5 mbgl) compared to the deeper depth intervals. For example, no compounds with more than eight perfluorinated carbons were detected in the samples from deeper than 1.0 mbgl. For all depth intervals, the main compound present is PFOS (average composition was between 68% and 94%). This may be due to the slightly acidic to near neutral (pH ranging 5.66 to 6.49) and fresh conditions (total dissolved solids ranging 69.9 to 866 mg/L) of the groundwater, which may inhibit the sorption of PFOS onto organic matter, thus increasing mobility (CRC CARE, 2018).

The samples from 9.0 mbgl mainly consisted of two compounds, PFOS (74%) and PFHxS (25%). The ratio of PFHxS was noted to increase from 1% at the 0.1 to 0.5 mbgl depth interval to 25% at the 9.0 mbgl depth interval. As the samples from 9.0 mbgl are from the saturated zone (SWL was between 8.0 and 8.4 mbgl), the presence of PFHxS and PFOS is likely to relate to adsorption onto clay particles of these compounds from groundwater. PFHxS and PFOS are noted to be the main compounds present in groundwater.

#### 7.4.2 Groundwater Profile

The groundwater samples had a smaller range of chain lengths compared to the soil samples, between four and eight perfluorinated carbons. The smaller number of chain lengths present in groundwater may be due to the longer chain PFAS having a greater potential to sorb to soil particles compared to shorter chain PFAS, or due to longer chain PFAS having lower solubilities than shorter chain compounds.

The composition of PFAS in groundwater is dominated by PFOS (average 56%) and PFHxS (average of 34%), with seven other compounds present at 1% or higher.

#### 7.4.3 Summary

Based on **Table 19** approximately 99% of the mass of PFAS in the soil (based on the sum of 28 PFAS analysed) is comprised of longer chain with more than six perfluorinated carbons. Approximately 96% of the mass of PFAS in groundwater is comprised of longer chain length with more than six perfluorinated carbons.

## 7.5 Sediment Analytical Results

 $\Sigma$ (PFHxS+PFOS) concentrations in the sediment samples from drains located along the northern and southern site boundaries were 0.0004 and 0.0026 mg/kg at HH\_SED01 and HH\_SED02, respectively, indicating concentrations relatively close to the limit of reporting. The concentrations indicate sediment in the drains at the locations sampled is unlikely to represent a source of PFAS to surface water. PFOS (with eight perfluorinated carbons) was the only compound detected in HH\_SED01, while a larger range of compounds, between five and twelve perfluorinated carbons, were detected in HH\_SED02.

## 8.0 Conceptual Site Model - PFAS

#### 8.1 Introduction

#### 8.1.1 Purpose

The purpose of the CSM is to provide an understanding of the nature and extent of contamination impacts and the migration mechanisms, and the exposure pathways by which identified receptors may be exposed to contamination from the Investigation areas. The CSM also serves as a framework to assess risks to human health and ecological receptors and assists in identifying uncertainties and data gaps. A preliminary CSM was developed as part of the PSI (AECOM, 2019). The CSM has been updated based on the findings of this PFAS DSI.

#### 8.1.2 Definition of source-pathway-receptor linkages

In accordance with national guidance on assessment of contamination (NEPM, 2013), potential risks to receptors are evaluated based on three components:

- Source: A potentially hazardous substance that has been released into the environment
- **Receptors**: A person, ecosystem or ecological member potentially at risk of experiencing an adverse response following exposure to the source or derivatives of the source
- Pathway: A mechanism by which receptors can become exposed to the source or derivatives of the source.

If all three components are present at an exposure scenario, the source-pathway-receptor linkage is considered complete and a receptor is exposed to risk. However, if one of these three is missing there is no direct risk to receptors.

## 8.1.3 Definition of exposure pathways

In order for a human receptor to be exposed to a chemical contaminant derived from the site, a complete exposure pathway must exist. An exposure pathway describes the course a chemical or physical agent takes from the source to the exposed individual and generally includes the following elements (USEPA, 1989):

- A source and mechanism of chemical release
- A retention or transport medium (or media where chemicals are transferred between media)
- A point of potential human contact with the contaminated media
- An exposure route (e.g. ingestion, inhalation) at the point of exposure.

#### 8.2 Contaminants of Potential Concern

The main contaminants of concern are those with guideline values in the NEMP (HEPA, 2018), PFHxS, PFOS and PFOA.

#### 8.3 Sources

The main source areas of PFAS contamination at the site are summarised below.

#### 8.3.1 Primary Sources

The following activities on the site are considered to have resulted in PFAS impacts to soil, and groundwater:

- Former firefighting training activities using AFFF containing PFAS at the foam training area (see Figure 2, Appendix A)
- Leaks and spills of AFFF containing PFAS from storage areas, and during product transfer and maintenance.

## 8.3.2 Secondary Sources

The following secondary sources were identified could potentially lead to PFAS impacts:

- Surface soil where AFFF containing PFAS was historically discharged to surface
- Unsaturated zone soil beneath potential source zones
- Concrete infrastructure that has been in contact with AFFF
- Water with trace concentrations of PFAS stored in the Case 4 Pit
- Sediment within earthen stormwater perimeter drainage lines.

#### 8.3.3 Off-Site

The following off-site landuses have the potential to affect groundwater quality beneath the site:

- The adjacent SES land, immediately to the south in the eastern portion of the site
- An industrial unit, located approximately 200 m to the northeast of the site
- Wilmar Sugar Inkerman Mill located approximately 2 km northwest of the site.

## 8.4 Migration Mechanisms

The mechanisms which may have contributed to the migration of PFAS across and from the site include:

- Historical discharge of AFFF containing PFAS to ground surface or leakage from storage infrastructure
- Spilling of AFFF containing PFAS to ground surface during filling and decanting operations
- Sorption of PFAS to soil in areas where AFFF was historically used, particularly in unsealed areas such as the grassed former foam training area
- Localised dispersion of firefighting foams with wind during historical application
- Surface water run-off containing PFAS flowing into surface water and off-site migration within the drainage system
- Leaching of PFAS from soil and infiltration to groundwater in areas where AFFF was historically
  used
- Leaching of PFAS from concrete pavements and infiltration to surface water or groundwater
- Lateral and vertical migration of PFAS in groundwater under the influence of groundwater flow and PFAS dispersion
- Migration within backfill to underground services which may act as preferential pathways for PFAS in the unsaturated zone
- Use of groundwater offsite for industrial activities, recreational activities, irrigation for parks and gardens and domestic activities
- Sorption of PFAS to soil below the groundwater table during migration with groundwater. Sorption
  to soil slows down the migration of PFAS, but sorbed PFAS may continue to diffuse back into
  groundwater and act as a secondary source, if conditions are suitable
- Excavation of soil containing PFAS and relocation to other areas on site
- Transport of sediment along stormwater drains.

# 8.5 Receptors and Exposure Pathways

The following potential human and ecological receptors have been identified:

- Personnel who work at the fire station (current and future QFES employees). This includes intrusive (i.e. involved in soil excavation) maintenance workers who may conduct infrequent maintenance activities at the site and come into contact with impacted soil and/or stormwater and/or groundwater
- Visitors to the site who stay for a short period and are not frequently present at the site who may come into contact with impacted soil and/or stormwater
- Persons exposed to groundwater extracted from off-Site bores for industrial activities, recreational activities, irrigation for parks and gardens and domestic activities
- Recreational users of nearby surface water bodies
- The terrestrial ecosystem (flora and fauna) both on- and off-site
- The aquatic ecosystems of nearby waterways.

The following potential exposure pathways have been identified for human receptors:

- Dermal contact and/or incidental ingestion of PFAS impacted soil, including dust inhalation
- Persons drinking PFAS impacted groundwater
- Dermal contact and/or incidental ingestion of PFAS impacted groundwater, surface water and sediment (in drains).

The following potential exposure pathways have been identified for ecological receptors:

• Ecological receptors in direct contact with PFAS impacted soil, sediment and surface water.

# 8.6 Assessment of Exposure Pathways

An assessment of the exposure pathways for the site is presented in **Table 20**. A figure showing the key features of the CSM is presented as **Figure 7**, **Appendix A**.

Table 20 Home Hill Fire Station CSM - PFAS

| Primary<br>Source                                                             | Secondary<br>Sources                   | Transport<br>Mechanism                                          | Exposure Pathways                                                                                         | Receptor                                                | Likelihood of complete linkage | Comments                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| On-Site areas<br>where<br>firefighting<br>foams have<br>been<br>discharged or | PFAS in soil                           | Excavation of soil during construction / maintenance activities | Human health: incidental ingestion of soil, direct contact with soil (dermal contact and dust inhalation) | Intrusive<br>maintenance<br>/<br>landscaping<br>workers | Unlikely                       | Considered unlikely due to use of occupational health and safety controls and non-exceedance of health guideline values for PFAS in soil for a commercial land use. No anticipated change to future land use.                |
| spilt to the environment.  Off-Site areas where firefighting foams have       |                                        |                                                                 | Ecological: ingestion of plants and terrestrial biota by higher order ecological receptors                | Terrestrial ecosystem                                   | Possible                       | Considered possible due to exceedance of the indirect ecological guideline value for commercial/industrial land use and residential land use criteria. Near surface soils are considered accessible to ecological receptors. |
| been<br>discharged or<br>spilt to the<br>environment                          |                                        | General QFES activities                                         | Human health: incidental ingestion of soil, direct contact with soil (dermal contact and dust inhalation) | Site workers and visitors                               | Unlikely                       | Considered unlikely due to non-<br>exceedance of health guideline values for<br>PFAS in soil for commercial land use. No<br>anticipated change to future land use.                                                           |
|                                                                               | PFAS in concrete lined pits and drains | Leaching of PFAS within concrete structures to                  | Human health - Incidental ingestion or contact with soil, groundwater or surface water.                   | Surface soil,<br>groundwater,<br>and surface<br>water   | Possible                       | Considered possible as PFAS concentrations in soil and groundwater may be partly sourced from concrete impregnated with PFAS.                                                                                                |
|                                                                               |                                        | soil,<br>groundwater<br>and surface<br>water.                   | Ecological – uptake and bioaccumulation.                                                                  |                                                         |                                |                                                                                                                                                                                                                              |

| Primary<br>Source | Secondary<br>Sources  | Transport<br>Mechanism                                                                                                             | Exposure Pathways                                                                                                                              | Receptor                         | Likelihood of complete linkage | Comments                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | PFAS in groundwater   | Groundwater transport in aquifer followed by extraction and use for domestic, recreational, industrial uses and irrigation (parks) | Human health: direct ingestion or incidental ingestion or direct contact with groundwater (off-Site)                                           | Off-Site<br>groundwater<br>users | Possible                       | Considered possible because groundwater beneath the site is fresh and potable, the shallow sand aquifer is likely to be permeable, the presence of registered bores hydraulically down gradient of the site (to the north), which are used for water supply and are screened in the shallow aquifer. Additional unregistered bores may also be present in the surrounding area. |
|                   |                       |                                                                                                                                    | Uptake and bioaccumulation in terrestrial biota                                                                                                | Flora and fauna                  | Possible                       |                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                       | Groundwater<br>transport in<br>aquifer followed<br>by extraction for<br>stock watering                                             | Livestock: direct ingestion or incidental ingestion or direct contact with groundwater (off-site)                                              | Livestock                        | Unlikely                       | Considered unlikely as the fire station is located in an urban areas and groundwater in the vicinity of the site is unlikely to be used for stock watering purposes.                                                                                                                                                                                                            |
|                   | PFAS in surface water | Surface water<br>transport via<br>overland flow<br>into on- and off-<br>site drains that<br>discharge into                         | Human health: direct or incidental ingestion or direct contact with off-site surface water (i.e. surface water, drainage overland flow water). | Recreational users               | Possible                       | Considered possible as PFAS in shallow soil / concrete at the site has the potential to leach into runoff which may enter stormwater channels. This would be mitigated by the distance of the site from surface water features. The nearest                                                                                                                                     |
|                   |                       | channels and potentially the Burdekin River                                                                                        | Ecological: direct<br>exposure as well as<br>ingestion of biota by<br>higher order ecological<br>receptors                                     | Aquatic<br>ecosystem             | Possible                       | feature is a canal (650 m to the north) and Burdekin River (3 km to the north). As no water was present during the sampling event, the investigation was not able to sample surface water.                                                                                                                                                                                      |

| Primary<br>Source | Secondary<br>Sources                            | Transport<br>Mechanism       | Exposure Pathways                                                                                                | Receptor             | Likelihood of complete linkage | Comments                                                                                                                                         |
|-------------------|-------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Accumulation<br>of PFAS in<br>creek<br>sediment | Dispersion via surface water | Human health: incidental ingestion or direct contact with sediment (off-site). Direct ingestion of aquatic biota | Recreational users   | Unlikely                       | Considered unlikely as sediment samples collected from drainage lines on-site have relatively low PFAS concentrations that are close to the LOR. |
|                   |                                                 |                              | Ecological: direct<br>exposure, as well as<br>ingestion of biota by<br>higher order ecological<br>receptors      | Aquatic<br>ecosystem | Unlikely                       |                                                                                                                                                  |

# 9.0 Conclusions

The key findings of the PFAS DSI are presented below.

- Groundwater elevations in August 2019 indicated a shallow aquifer is present beneath the site.
  Depth to groundwater was approximately 8.4 mbgl. Groundwater was inferred to locally flow
  towards the north/northeast. This is consistent with the expected regional groundwater flow
  direction, which is likely to be from south to north towards the Burdekin River, which is the main
  hydrological feature in the area.
- The primary PFAS compound present in the soil samples was perfluorooctanesulfonic acid (PFOS). The soil samples collected were from bores located adjacent to the main potential source area, the foam training area and the area where the Case 4 Pit was located. The highest sum of perfluorohexanesulfonic acid (PFHxS) and PFOS concentrations detected were in the shallow soil (0.5 mbgl) in a bore located to the east of the foam training area in the central portion of the site (HH\_SS01). PFAS concentrations were at relatively higher concentrations in soil samples from bores adjacent to the foam training area indicating the area may have had a larger historical footprint. The soil samples analysed from bores in and around the foam training area indicated that soil PFAS (PFHxS and PFOS) concentrations decreased with increased depth, with relatively higher PFAS concentrations in the near-surface material. Elevated PFAS concentrations in soil were also detected in unsaturated and saturated zone samples collected from a soil bore (HH\_BH03) located adjacent to the Case 4 Pit indicating a potential historical source of PFAS to soil in this area.
- None of the 18 soil samples analysed from eight soil bores exceeded the NEMP (HEPA, 2018) health guideline values for commercial land use. The concentration of PFOS in one soil sample from an unsealed area (HH\_SS1 at 0.5 mbgl (0.223 mg/kg)) exceeded the NEMP (HEPA, 2018) ecological PFOS guideline value for a commercial land use. Landscaped/grassy areas, potentially accessible to ecological receptors are located in the central and eastern portion of the site. Analytical results for nine soil samples detected PFOS concentrations that exceeded the guideline value for ecological indirect exposure for residential land use. Due to the urbanised setting of the site, it is considered that the ecological receptors would be transient in nature, and comparison against the residential land use guideline is considered to be an appropriately conservative approach. The higher PFOS concentrations were detected in fill materials (to 0.8 mbgl) and in samples of natural soil located immediately below the base of the fill.
- The primary PFAS compounds detected in groundwater were PFHxS and PFOS. Σ(PFHxS+PFOS) concentrations exceeding the NEMP (HEPA, 2018) human health drinking water guideline value were reported in groundwater samples from all four monitoring wells. Two groundwater samples with relatively higher concentrations (5.1 μg/L and 3.7 μg/L Σ(PFHxS+PFOS)) were located adjacent and cross-gradient to the Case 4 Pit (HH\_MW03) and foam training area (HH\_MW02), respectively. Groundwater concentrations in the other two monitoring wells, which were located hydraulically up- or cross-gradient of the foam training area, had relatively lower concentrations (up to 0.53 μg/L Σ(PFHxS+PFOS)). This indicates the foam training area and the area of the Case 4 Pit are potentially source areas of PFAS to groundwater. The Case 4 Pit area and HH\_MW03 are noted to be down-gradient of the adjacent SES facilities (a potential off-site source area) and cross-gradient to the foam training area.
- The lateral extent of the area of groundwater with elevated concentrations of PFHxS and PFOS is uncertain and has not been established in any direction. Based on the presence of a potentially permeable shallow sand aquifer and inferred local flow direction towards the north, there is the potential for PFAS in groundwater to extend off-site beyond the northern site boundary at concentrations in excess of human health and ecological guideline values. Residential and commercial properties and recreational land are present beyond the northern site boundary with the closest registered bore used for water supply present approximately 370 m northeast of the northern site boundary. There are 12 registered bores screened in the shallow aquifer (approximately 10 mbgl) that are used for water supply and which are located hydraulically downgradient, within 1 km of the site. The closest surface water receptor is a canal located

approximately 650 m north of the site, with the Burdekin River present approximately 3 km north of the site.

- The laboratory analytical technique for TOPA is used to detect certain harder to analyse PFAS
  precursor compounds that may be present. The results of TOPA analysis on one soil and one
  groundwater sample did not indicate the presence of PFAS precursors. The results indicated a
  degraded PFAS product that is unlikely to significantly increase or alter through bio-transformation
  or oxidation processes.
- Based on information provided as part of the PSI, the source of the PFAS detected in soil and groundwater samples is considered likely to be related to the historical firefighting training practices at the fire station, or spills from storage containers, product transfer and other maintenance activities.

Based on these key findings, the PFAS CSM developed for the PSI has been updated. A number of possibly complete exposure pathways for PFAS sourced from the fire station to impact off-site human and ecological receptors have been identified. The significance of these potentially complete source-pathway-receptor linkages is uncertain and further investigation is required to understand the potential risks to off-site receptors.

# 10.0 References

AECOM, 2019, Preliminary Site Investigation and Sampling, Analysis and Quality Plan, QFES, April 2019.

Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2018) at <a href="https://www.waterquality.gov.au/anz-guidelines/guideline-values/default">https://www.waterquality.gov.au/anz-guidelines/guideline-values/default</a>

Australian Government, National Water Commission, 2012, *Minimum Construction Requirements for Water Bores in Australia*, Edition 3, February 2012.

Batley et al., 2018, Application of revised methodologies for default guideline value derivations: PFOS in freshwater, presented at the Society of Environmental Toxicology and Chemistry (SETAC) scientific conference in November 2018

CRC CARE, 2018, Practitioner guide to risk-based assessment, remediation and management of PFAS site contamination, Technical Report No. 43, CRC Care 2018

Department of Agriculture and Fisheries, 2019, Fisheries Act 1994

Department of Environment, 1998, Draft Guidelines for the Assessment and Management of Contaminated Land in Queensland

Department of Environment and Science, 2018, Queensland Auditor Handbook for Contaminated Land, Module 6: Content requirements for contaminated land investigation documents, certifications and audit reports, ESR/2018/4224v2.01, 2018.

Department of Environment and Science, 2019, Environmental Protection Act 1994

Government of Western Australia Department of Environmental Regulation, 2017. *Interim Guideline on the Assessment and Management of Perfluoroalkyl and Polyfluoroalkyl Substances*, Version 2.1 (20 January 2017).

Heads of Environmental Protection Agencies Australian and New Zealand, 2018, *PFAS National Environmental Plan (NEMP)*, January 2018.

Hekster, F.M., P. de Voogt, A.M.C.M. Pijinenburg and R.W.P.M. Laane. 2002. Perfluoroalkylated substances -- aquatic environmental assessment. Report RIKZ/2002.043. Prepared at the University of Amsterdam and RIKZ (The State Institute for Coast and Sea), July 1, 2002. 99 pp.

National Environment Protection Council (NEPC), 1999. *National Environment Protection (Assessment of Site Contamination) Measure* 1999, as amended 2013.

National Health and Medical Research Council, 2019, *Guidance on Per and Polyfluoroalkyl substances in Recreational Water*, Canberra, 2019.

QFES, 2016. In-ground Tank Water Contamination by PFAS v1.3, 2016.

Standards Australia (AS4482.1-2005) Guide to the sampling and investigation of potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds.

Standards Australia (AS 4482.2-1999) Guide to the sampling and investigation of potentially contaminated soil, Part 2: Volatile Substances.

Standards Australia, 1998. Water quality – Sampling. Part 11: Guidance on sampling of groundwaters. Australian Standards, AS5667.11, 5 April 1998.

US EPA, 2002, Guidance on Environmental Data Verification and Data Validation, November 2002.

US EPA, 2006 Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA QA/G-4 (EPA 240/B-06/001).

## Web References in Report

https://www.solbergfoam.com/Foam-Concentrates/RE-HEALING-Foam.aspx Accessed on 14 October 2019.

http://technotes.alconox.com/industry/laboratory/manual-lab-cleaning/pfoa-pfos-pfas-alconox-cleaners/Accessed on 16 October 2019.

https://environment.des.qld.gov.au/management/water/policy/consultations#burd-haught-don Accessed 26 October 2019.

http://www.bom.gov.au/water/groundwater/gde/map.shtml\_Accessed 26 October 2019.

https://environment.des.qld.gov.au/licences-permits/maps of environmentally sensitive areas.php Accessed 26 October 2019.

# 11.0 Limitations

AECOM Australia Pty Ltd has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of Queensland Fire and Emergency Services and only those third parties who have been authorised in writing by AECOM to rely on the report.

The report is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report.

The report is prepared in accordance with the scope of work and for the purpose outlined in the Proposal dated 23 May 2019.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties.

The methodology adopted and sources of information used by AECOM are outlined in the report.

Where this report indicates that information has been provided to AECOM by third parties, AECOM has made no independent verification of this information unless required as part of the agreed scope of work. AECOM assumes no liability for any inaccuracies in or omissions to that information.

This report was prepared between 19 August 2019 and 19 November2019. The information in this report is considered to be accurate at the date of issue and is in accordance with conditions at the Site and surrounding areas at the dates sampled. Opinions and recommendations presented herein apply to the Site and surrounding areas existing at the time of our investigation and cannot necessarily apply to changes to Site and surrounding areas of which AECOM is not aware and has not had the opportunity to evaluate. This document and the information contained herein should only be regarded as validly representing the Site and surrounding area conditions at the time of the investigation unless otherwise explicitly stated in a preceding section of this report. AECOM disclaims responsibility for any changes that may have occurred after this time.

Except as required by law, no third party may use or rely on this report, unless otherwise agreed by AECOM in writing. Where such agreement is provided, AECOM will provide a letter of reliance to the agreed third party in the form required by AECOM.

To the extent permitted by law, AECOM expressly disclaims and excludes liability for any loss, damage, cost or expenses suffered by any third party relating to or resulting from the use of, or reliance on, any information contained in this report. AECOM does not admit that any action, liability or claim may exist or be available to any third party.

AECOM does not represent that this report is suitable for use by any third party.

Except as specifically stated in this section, AECOM does not authorise the use of this report by any third party.

It is the responsibility of third parties to independently make inquiries or seek advice in relation to their particular requirements and proposed use of the relevant property.

# **List of Appendices**

Appendix A Figures
Appendix B Tables

Appendix C Photographs
Appendix D Bore Logs

Appendix E Fieldsheets and Calibration Certificates

Appendix F Surveying Report

Appendix G Analytical Data Validation

Appendix H Laboratory Analytical Reports

# Appendix A

**Figures** 

# Appendix A Figures

| igure 1 | Site Location                                |
|---------|----------------------------------------------|
| igure 2 | Site Layout and Sampling Locations           |
| igure 3 | Inferred Groundwater Contours: 6 August 2019 |
| igure 4 | Soil PFAS Analytical Results                 |
| igure 5 | Groundwater PFAS Analytical Results          |
| igure 6 | Sediment PFAS Analytical Results             |
| igure 7 | PFAS Conceptual Site Model                   |









- ◆ Monitoring Well Sample Location
- Sediment Sample Location
- Surface Soil Sample Location
- Drainage Pit
- Hydrant
- Drainage Line
- Comms Line
- - Electrical Line
- Fence
- Hydrant Water Mains
- --- Sewer
  - Water Line
- Approximate area used for foam training exercises
- Natural Depression
- Site Boundary
- Property Boundary





Queensland Fire and Emergency Services (QFES)

# FIGURE 2 Site Layout and Sampling Locations

## PFAS Detailed Site Investigation at Home Hill Fire Station







Monitoring Well Sample Location

Sediment Sample Location

Surface Soil Sample Location

Drainage Pit

Hydrant

Inferred groundwater contours (mAHD)\*

Drainage Line

Comms Line

- - - Electrical Line

Fence

Hydrant Water Mains

Sewer

Approximate area used for foam training exercises

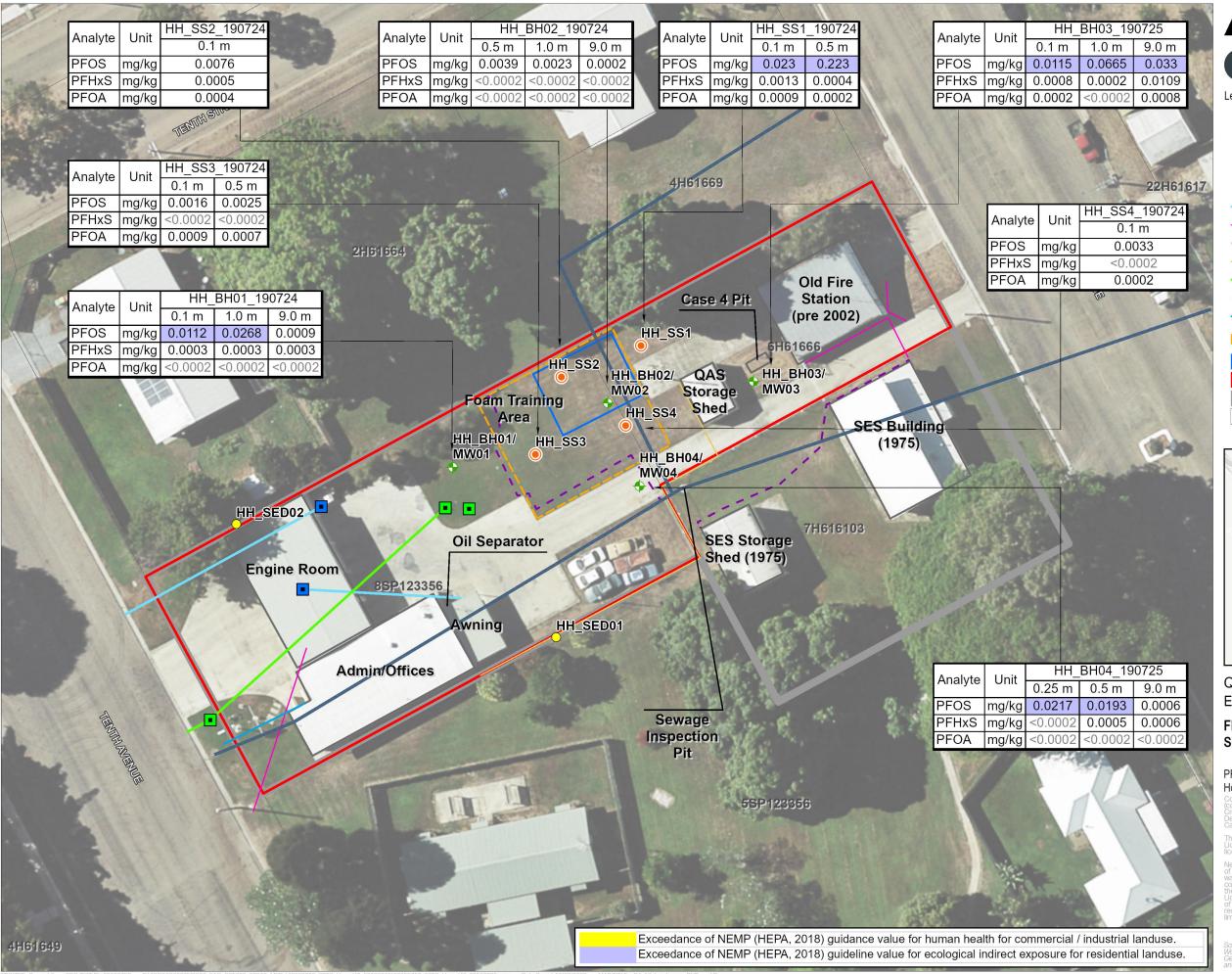
Natural Depression

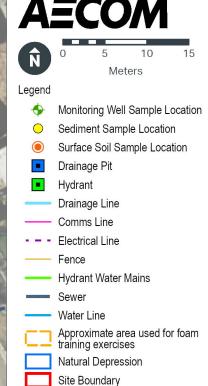
Site Boundary

Property Boundary

Cadastre

Inferred Groundwater flow direction





# Queensland Fire and **Emergency Services (QFES)**

# FIGURE 3 **Inferred Groundwater Contours:** 6 August 2019

# PFAS Detailed Site Investigation at Home Hill Fire Station

Source: State of Queensland, 2019. AECOM 2019 World Imagery: ESRI, DigitalGlobe, GeoEye, Earthstar Geographics, CHES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community





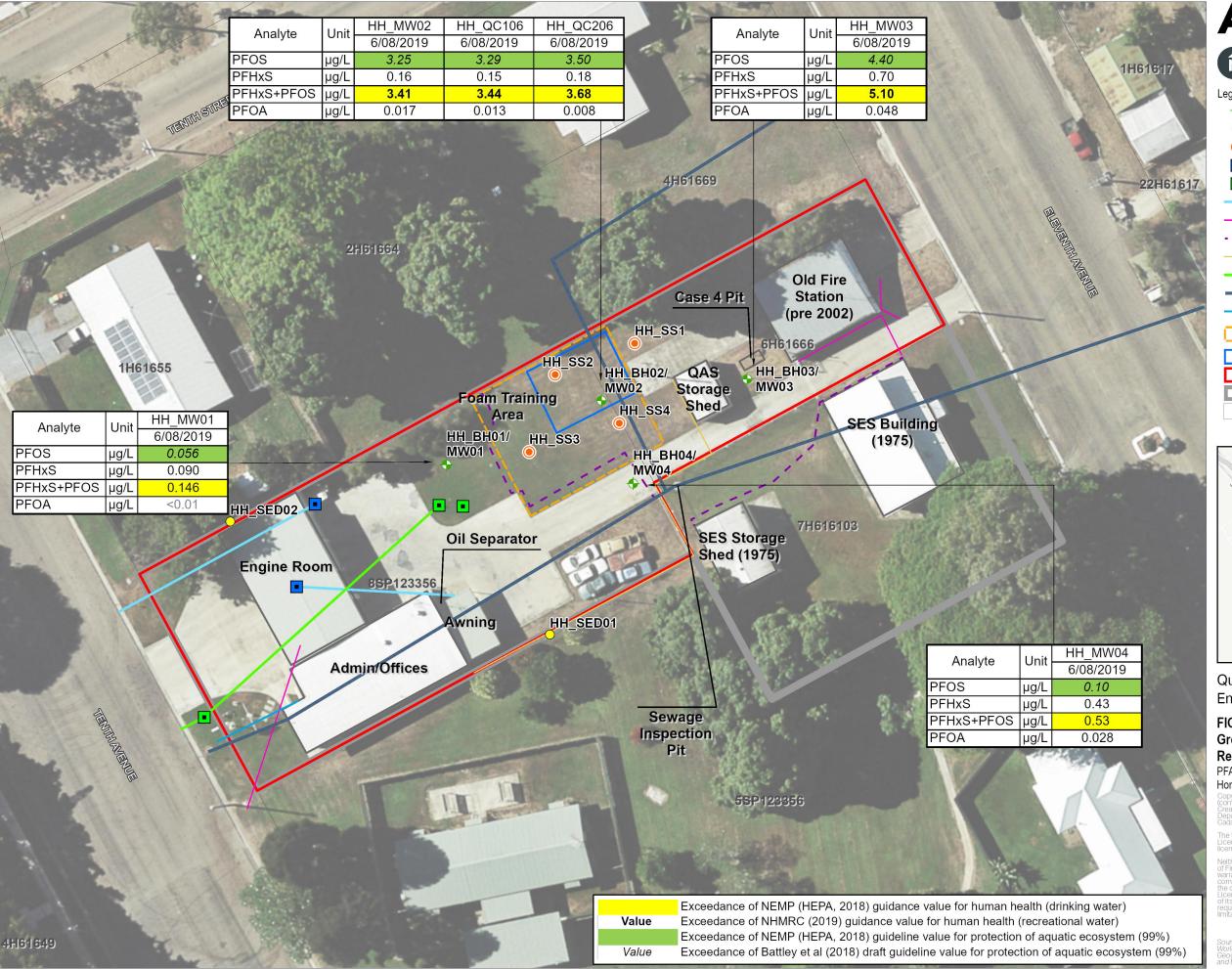
Property Boundary

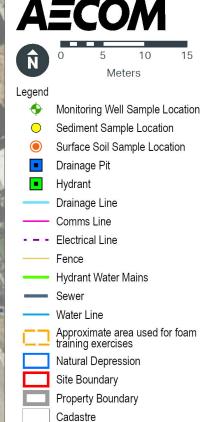
Cadastre



Queensland Fire and Emergency Services (QFES)

# FIGURE 4 Soil PFAS Analytical Results


# PFAS Detailed Site Investigation at Home Hill Fire Station


Copyright: Copyright in material relating to the base layers (contextual information) on this page is licensed under a Creative Commons, Attribution 3.0 Australia licence ⊚ Department of Finance, Services & Innovation 2017, (Digita Cadastral Database) and/or Digital Topographic Database).

The terms of Creative Commons Attribution 3.0 Australia License are available from https://creativecommons.org/ licenses/by/3.0/au/legalcode (Copyright Licence)

Neither AECOM Australla Pty Ltd (AECOM) nor the Departmen of Finance, Services & Innovation make any representations or warranties of any kind, about the accuracy, reliability, completeness or suitability or fitness for purpose in relation to the content (in accordance with clause 5 of the Copyright Licence). AECOM has prepared this document for the sole use of its Client based on the Client's description of its requirements having regard to the assumptions and other limitations set out in this report, including page 2.

Source: State of Queensland, 2019. AECOM 2019 World Imagery: ESRI, DigitalGlobe, GeoEye, Earthstar Geographics, CHES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community







Queensland Fire and Emergency Services (QFES)

# FIGURE 5 Groundwater PFAS Analytical Results

PFAS Detailed Site Investigation at Home Hill Fire Station

Copyright: Copyright in material relating to the base layers (contextual information) on this page is licensed under a Creative Commons, Attribution 3 of Australia licence @ Department of Finance, Services & Innovation 2017. (Digital Cadastral Database andfor Digital Topographic Database).

The terms of Creative Commons Attribution 3.0 Austral License are available from https://creativecommons.org/licenses/by/3.0/au/legalcode/Copyright Licence)

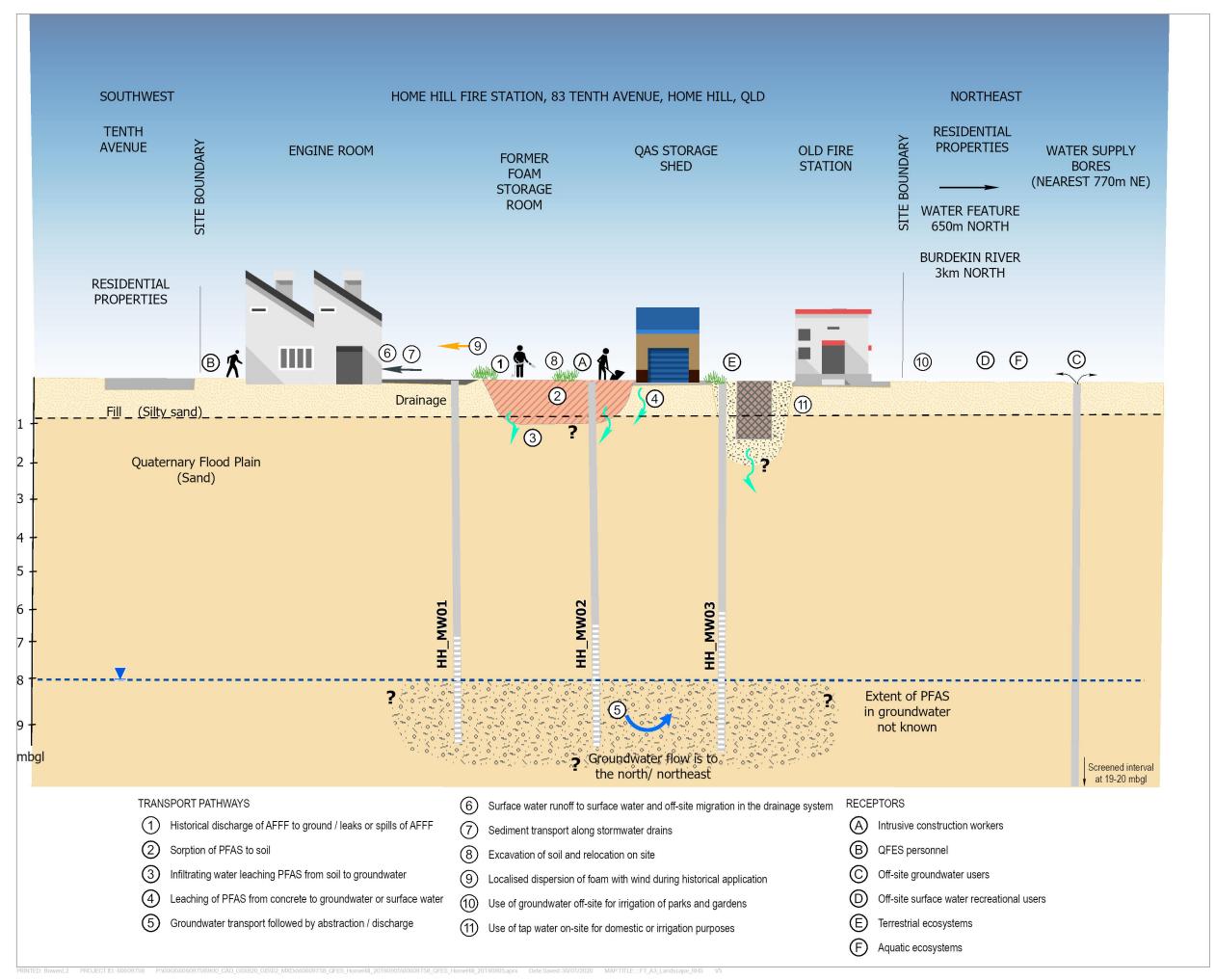
Neither AECOM Australia Pty Ltd (AECOM) nor the Department of Finance, Services & Innovation make any representations or varranties of any kind, about the accuracy, reliability, completeness or suitability or ithrees for purpose in relation to he content (in accordance with clause 5 of the Copyright Licence). AECOM has prepared this document for the sole use of its Client based on the Client's description of its equirements having regard to the assumptions and other imitations set out in this report, including page 2.

Source: State of Queensland, 2019. AECOM 2019 World Imagery: ESRI, DigitalGlobe, GeoEye, Earthstar Geographics, CHES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community








- Monitoring Well Sample Location
- Sediment Sample Location
- Surface Soil Sample Location
- Drainage Pit
- Hydrant
- Drainage Line
- Comms Line
- - Electrical Line
- Fence
- Hydrant Water Mains
- --- Sewer
- Approximate area used for foam training exercises
- Natural Depression
- Site Boundary
- Property Boundary
  - Cadastre



Queensland Fire and **Emergency Services (QFES)** 

# FIGURE 6 **Sediment PFAS Analytical Results**

## PFAS Detailed Site Investigation at Home Hill Fire Station



# **AECOM**NOT TO SCALE

### Legend

PFAS in groundwater

PFAS in soil

Concrete

Case 4 Pit

Backfill

Inferred groundwater flow direction

Infiltration / Leaching

Migration in stormwater drains

Wind dispersion of foam

-- Inferred groundwater depth

Groundwater table



# Queensland Fire and Emergency Services (QFES)

# FIGURE 7 PFAS Conceptual Site Model

# PFAS Detailed Site Investigation at Home Hill Fire Station

opyright: Copyright in material relating to the base layers ontextual information) on this page is licensed under a reative Commons, Attribution 3.0 Australia licence © epartment of Finance, Services & Innovation 2017, (Digita datastral Database and/or Digital Topographic Database)

The terms of Creative Commons Attribution 3.0 Australia License are available from https://creativecommons.org/licenses/bv/3.0/au/legalcode (Copyright Licence)

leither AECOM Australia Pty Ltd (AECOM) nor the Department Finance, Services & Innovation make any representations or rarrantles of any kind, about the accuracy, reliability, or a content in accordance with clause 5 of the Copyright, icence), AECOM has prepared this document for the sole use fits Client based on the Client's description of its squirements having regard to the assumptions and other mitations set out in this report, including page 2.

Source: State of Queensland, 2019. World Imagery: ESRI, DigitalGlobe, GeoEye, Earthstar Geographics, CHES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

# Appendix B

**Tables** 

### Appendix B Tables

| Table T1 Well Construction D |
|------------------------------|
|------------------------------|

- Table T2 Groundwater Gauging Results
- Table T3 Groundwater Quality Parameter Results
- Table T4 Soil Analytical Results
- Table T5 **Groundwater Analytical Results**
- Table T6 Sediment Analytical Results



Appendix B: Tables PFAS Detailed Site Investigation Home Hill Fire Station Project No: 60609758

| Location ID | Date of<br>Installation | Easting    | Northing    | Top of Casing<br>Elevation (mAHD) | Cover | TOC Elevation (m<br>AHD) | Drilled<br>Depth (m) | Top of screen (mbgs) | Water Strike<br>(mbgs) | Lithology of screened section |
|-------------|-------------------------|------------|-------------|-----------------------------------|-------|--------------------------|----------------------|----------------------|------------------------|-------------------------------|
| BH01/MW01   | 24/07/2019              | 543616.680 | 7825995.215 | 12.471                            | Gatic | 12.523                   | 10.0                 | 7.0                  | 8.4                    | SAND                          |
| BH02/MW02   | 24/07/2019              | 543635.536 | 7826003.024 | 12.114                            | Gatic | 12.195                   | 10.0                 | 7.0                  | 8.4                    | SAND                          |
| BH03/MW03   | 25/07/2019              | 543653.240 | 7826005.662 | 12.086                            | Gatic | 12.176                   | 10.0                 | 7.0                  | 8.4                    | SAND                          |
| BH04/MW04   | 25/07/2019              | 543639.395 | 7825992.910 | 12.325                            | Gatic | 12.4                     | 10.0                 | 6.0                  | 8.4                    | SAND                          |

# Notes

'm' is metres

'mAHD' is metres above Australian height datum

'mbgs' is metres below ground surface

TOC' is top of casing



Appendix B: Tables PFAS Detailed Site Investigation Home Hill Fire Station Project No: 60609758

| Well ID | Easting  | Northing  | Top of Casing<br>Elevation (mAHD) | Gauging Date | Total Depth<br>(mbtoc) | Depth to Water<br>(mbtoc) | Corrected Groundwater<br>Elevation (mAHD) |
|---------|----------|-----------|-----------------------------------|--------------|------------------------|---------------------------|-------------------------------------------|
| HH_MW01 | 543616.7 | 7825995.2 | 12.471                            | 6/08/2019    | 10.0                   | 8.372                     | 4.099                                     |
| HH MW02 | 543635.5 | 7826003.0 | 12.114                            | 6/08/2019    | 10.0                   | 8.032                     | 4.082                                     |
| HH_MW03 | 543653.2 | 7826005.7 | 12.086                            | 6/08/2019    | 10.1                   | 7.997                     | 4.089                                     |
| HH MW04 | 543639.4 | 7825992.9 | 12.325                            | 6/08/2019    | 9.0                    | 8.221                     | 4.104                                     |

Notes 'mAHD' is metres above Australian height datum 'mbtoc' is metres below top of casing



Appendix B: Tables PFAS Detailed Site Investigation Home Hill Fire Station Project No: 60609758

| Well ID | Date      | рН   | Temperature (°C) | Electrical<br>Conductivity<br>(µS/cm) | Total Dissolved<br>Solids (mg/L) | Dissolved Oxygen<br>(mg/L) | Field Oxidation<br>Reduction<br>Potential (mV) | Oxidation<br>Reduction<br>Potential (mV)* |
|---------|-----------|------|------------------|---------------------------------------|----------------------------------|----------------------------|------------------------------------------------|-------------------------------------------|
| MW01    | 6/08/2019 | 6.39 | 27.7             | 467.5                                 | 303.9                            | 5.2                        | 138.9                                          | 343.9                                     |
| MW02    | 6/08/2019 | 6.50 | 27.8             | 677.0                                 | 440.1                            | 4.96                       | 143.9                                          | 348.9                                     |
| MW03    | 6/08/2019 | 6.39 | 27.7             | 536.0                                 | 348.4                            | 3.46                       | 152.1                                          | 357.1                                     |
| MW04    | 6/08/2019 | 6.46 | 28.3             | 610.0                                 | 396.5                            | 4.36                       | 148.4                                          | 353.4                                     |

### Notes

"C' is degrees Celsius

'µS/cm' is microsiemens per centimetre

'mg/L' is milligrams per litre

'mV' is millivolt

<sup>\*</sup> A correction factor (+205) has been applied to the water quality meter reading to correct to the value that would be obtained by a hydrogen reference electrode.

Appendix B: Tables PFAS Detailed Site Investigation Home Hill Fire Station Project No: 60609758 Table T4 Soil Analytical Results



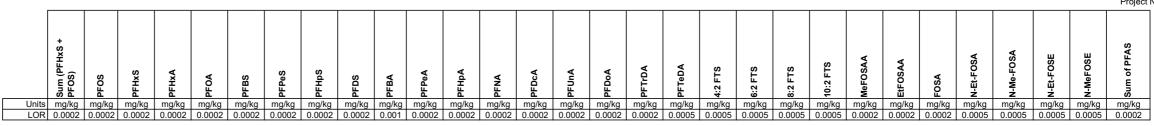
|                                                      |       | Sum (PFHxS + PFOS) | PFOS   | PFHXS  | РЕНХА  | PFOA   | PFBS   | PFPeS  | РЕНрЅ  | PFDS   | PFBA  | PFPeA  | РҒНрА  | PFNA   | PFDcA  | PFUnA  | PFDoA  | PFTrDA | PFTeDA | 4:2 FTS | 6:2 FTS | 8:2 FTS | 10:2 FTS | MeFOSAA | EtFOSAA | FOSA   | N-Et-FOSA | N-Me-FOSA | N-Et-FOSE | N-MeFOSE | Sum of PFAS | Sum of 10F C4 -<br>C14 Carboxylates<br>and C4 - C8<br>Sulfonates |
|------------------------------------------------------|-------|--------------------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|----------|---------|---------|--------|-----------|-----------|-----------|----------|-------------|------------------------------------------------------------------|
|                                                      | Units | mg/kg              |        |        | mg/kg  |        |        |        | mg/kg  |        |       |        |        | mg/kg  |        |        | mg/kg  |        |        | mg/kg   |         | mg/kg   | mg/kg    |         |         | mg/kg  |           |           |           | mg/kg    |             |                                                                  |
|                                                      | LOR   | 0.0002             | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.001 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0005 | 0.0005  | 0.0005  | 0.0005  | 0.0005   | 0.0002  | 0.0002  | 0.0002 | 0.0005    | 0.0005    | 0.0005    | 0.0005   | 0.0002      | 0.0002                                                           |
| NEMP (HEPA, 2018) Human Health Industrial/Commercial |       | 20                 |        |        |        | 50     |        |        |        |        |       |        |        |        |        |        |        |        |        |         |         |         |          |         |         |        |           |           |           |          |             |                                                                  |
| NEMP (HEPA 2018) Interim Soil Ecological Residential |       |                    | 0.01   |        |        |        |        |        |        |        |       |        |        |        |        |        |        |        |        |         |         |         |          |         |         |        |           |           |           |          |             |                                                                  |
| NEMP (HEPA, 2018) Interim Soil Ecological Commercial |       |                    | 0.14   |        |        |        |        |        |        |        |       |        |        |        |        |        |        |        |        |         |         |         |          |         |         |        |           |           |           |          |             |                                                                  |

| Sample ID               | Date       | Lab Report   | Туре       | 1      |        |          |          |          |          |            |        |         |        |          |          |          |          |          |          |          |          |          |         |          |            |        |          |          |          |          |          |          |        |      |
|-------------------------|------------|--------------|------------|--------|--------|----------|----------|----------|----------|------------|--------|---------|--------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------|----------|------------|--------|----------|----------|----------|----------|----------|----------|--------|------|
| PFAS by Standard Analys | is         | •            |            |        |        |          |          |          |          |            |        |         |        |          |          |          |          |          |          |          |          |          |         |          |            |        |          |          |          |          |          |          |        |      |
| HH_SS1_0.1_190724       | 24/07/2019 | EB1919840    | Normal     | 0.0243 | 0.023  | 0.0013   | 0.0007   | 0.0009   | 0.0002   | <0.0002 <0 | 0.0002 | 0.0013  | <0.001 | 0.0007   | 0.0012   | 0.0011   | 0.0026   | 0.0028   | 0.0005   | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005 | <0.0005  | 0.0009 <   | 0.0002 | <0.0002  | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005  | <0.0005  | 0.0372 | -    |
| HH_SS1_0.5_190724       | 24/07/2019 | EB1919840    | Normal     | 0.223  | 0.223  | 0.0004   | 0.0004   | 0.0002   | < 0.0002 | <0.0002 <0 | 0.0002 | <0.0002 | <0.001 | 0.0005   | 0.0004   | 0.0016   | 0.0005   | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005 | < 0.0005 | < 0.0005 < | 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005  | < 0.0005 | 0.227  | -    |
| HH_QC101_190724         | 24/07/2019 | EB1919840    | Duplicate  | 0.186  | 0.186  | 0.0003   | 0.0003   | <0.0002  | <0.0002  | <0.0002 <0 | 0.0002 | <0.0002 | <0.001 | 0.0004   | 0.0003   | 0.0016   | 0.0004   | <0.0002  | < 0.0002 | < 0.0002 | <0.0005  | < 0.0005 | <0.0005 | < 0.0005 | < 0.0005 < | 0.0002 | <0.0002  | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005  | < 0.0005 | 0.189  | -    |
| HH_QC201_190724         | 24/07/2019 | RN1242618    | Triplicate | 0.220  | 0.22   | <0.001   | < 0.001  | < 0.001  | < 0.001  | < 0.001 <  | 0.001  | <0.001  | -      | < 0.002  | < 0.001  | 0.0022   | < 0.001  | < 0.002  | < 0.002  | < 0.002  | < 0.002  | < 0.001  | < 0.001 | < 0.001  | <0.002 <   | 0.002  | < 0.002  | < 0.001  | < 0.002  | < 0.002  | < 0.005  | < 0.005  | 0.222  | -    |
| HH_SS2_0.1_190724       | 24/07/2019 | EB1919840    | Normal     | 0.0081 | 0.0076 | 0.0005   | 0.0003   | 0.0004   | <0.0002  | <0.0002 <0 | 0.0002 | 0.0047  | <0.001 | 0.0003   | 0.0004   | 0.0004   | 0.0006   | 0.0008   | 0.0002   | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005 | <0.0005  | <0.0005 <  | 0.0002 | <0.0002  | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005  | <0.0005  | 0.0162 | -    |
| HH_SS3_0.1_190724       | 24/07/2019 | EB1919840    | Normal     | 0.0016 | 0.0016 | < 0.0002 | 0.0003   | 0.0009   | < 0.0002 | <0.0002 <0 | 0.0002 | <0.0002 | <0.001 | 0.0002   | 0.0009   | 0.0012   | 0.0048   | 0.0037   | 0.0006   | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005 | < 0.0005 | 0.0029 <   | 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005  | <0.0005  | 0.0171 | -    |
| HH_SS3_0.5_190724       | 24/07/2019 | EB1919840    | Normal     | 0.0025 | 0.0025 | < 0.0002 | 0.0006   | 0.0007   | <0.0002  | <0.0002 <0 | 0.0002 | <0.0002 | <0.001 | 0.0005   | 0.0011   | 0.0011   | 0.0033   | 0.0023   | 0.0006   | 0.0002   | < 0.0005 | < 0.0005 | <0.0005 | 0.0007   | 0.0061 <   | 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005  | <0.0005  | 0.0197 | -    |
| HH_SS4_0.1_190724       | 24/07/2019 | EB1919840    | Normal     | 0.0033 | 0.0033 | < 0.0002 | < 0.0002 | 0.0002   | <0.0002  | <0.0002 <0 | 0.0002 | <0.0002 | <0.001 | <0.0002  | < 0.0002 | 0.0003   | 0.0006   | 0.0005   | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005 | < 0.0005 | < 0.0005 < | 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005  | <0.0005  | 0.0049 | -    |
| HH_BH01_0.1_190724      | 24/07/2019 | EB1919840    | Normal     | 0.0115 | 0.0112 | 0.0003   | < 0.0002 | < 0.0002 | < 0.0002 | <0.0002 <0 | 0.0002 | <0.0002 | <0.001 | < 0.0002 | < 0.0002 | < 0.0002 | 0.0003   | 0.0003   | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005 | < 0.0005 | < 0.0005 < | 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005  | <0.0005  | 0.0121 | -    |
| HH_QC100_190724         | 24/07/2019 | EB1919840    | Duplicate  | 0.0067 | 0.0067 | < 0.0002 | <0.0002  | <0.0002  | <0.0002  | <0.0002 <0 | 0.0002 | <0.0002 | <0.001 | <0.0002  | < 0.0002 | < 0.0002 | < 0.0002 | 0.0002   | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005 | < 0.0005 | < 0.0005 < | 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005  | <0.0005  | 0.0069 | -    |
| HH_QC200_190724         | 24/07/2019 | RN1242618    | Triplicate | 0.013  | 0.013  | < 0.001  | < 0.001  | < 0.001  | < 0.001  | < 0.001 <  | 0.001  | <0.001  | -      | < 0.002  | < 0.001  | < 0.001  | < 0.001  | < 0.002  | < 0.002  | < 0.002  | < 0.002  | < 0.001  | < 0.001 | < 0.001  | < 0.002    | 0.002  | < 0.002  | < 0.001  | < 0.002  | < 0.002  | < 0.005  | < 0.005  | 0.013  | -    |
| HH_BH01_1.0_190724      | 24/07/2019 | EB1919840    | Normal     | 0.0271 | 0.0268 | 0.0003   | 0.0002   | <0.0002  | < 0.0002 | <0.0002 <0 | 0.0002 | <0.0002 | <0.001 | <0.0002  | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005 | < 0.0005 | < 0.0005 < | 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005  | <0.0005  | 0.0273 | -    |
| HH_BH01_9.0_190724      | 24/07/2019 | EB1919840    | Normal     | 0.0012 | 0.0009 | 0.0003   | < 0.0002 | < 0.0002 | < 0.0002 | <0.0002 <0 | 0.0002 | <0.0002 | <0.001 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005 | < 0.0005 | < 0.0005 < | 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005  | <0.0005  | 0.0012 | -    |
| HH_BH02_0.5_190724      | 24/07/2019 | EB1919840    | Normal     | 0.0039 | 0.0039 | < 0.0002 | <0.0002  | <0.0002  | <0.0002  | <0.0002 <0 | 0.0002 | <0.0002 |        | 0.0002   | 0.0002   | 0.0003   | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005 | < 0.0005 | < 0.0005 < | 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005  | <0.0005  | 0.0046 | -    |
| HH_BH02_1.0_190724      | 24/07/2019 | EB1919840    | Normal     | 0.0023 | 0.0023 | < 0.0002 | < 0.0002 | <0.0002  | <0.0002  | <0.0002 <0 | 0.0002 | <0.0002 | <0.001 | 0.0002   | <0.0002  | 0.0002   | < 0.0002 | <0.0002  | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005 | < 0.0005 | < 0.0005 < | 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | < 0.0005 | <0.0005  | 0.0027 | -    |
| HH_BH02_9.0_190725      | 25/07/2019 | EB1919840    | Normal     | 0.0002 | 0.0002 | < 0.0002 | <0.0002  | <0.0002  | <0.0002  | <0.0002 <0 | 0.0002 | <0.0002 | <0.001 | < 0.0002 | <0.0002  | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005 | < 0.0005 | < 0.0005 < | 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005  | <0.0005  | 0.0002 | -    |
| HH_BH03_0.1_190725      | 25/07/2019 | EB1919840    | Normal     |        | 0.0115 |          | <0.0002  | 0.0002   | <0.0002  | <0.0002 <0 | 0.0002 | 0.0015  | <0.001 | <0.0002  | <0.0002  | < 0.0002 | < 0.0002 | <0.0002  | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005 | < 0.0005 | < 0.0005 < | 0.0002 | <0.0002  | 0.0004   | < 0.0005 | <0.0005  | <0.0005  |          | 0.0144 | -    |
| HH_BH03_1.0_190725      | 25/07/2019 | EB1919840    | Normal     |        | 0.0665 |          | <0.0002  | <0.0002  | < 0.0002 | <0.0002 <0 |        | <0.0002 | <0.001 | < 0.0002 | <0.0002  | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005 | < 0.0005 | < 0.0005 < | 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005  |          | 0.0667 | -    |
| HH_BH03_9.0_190725      |            | EB1919840    | Normal     | 0.0439 | 0.033  | 0.0109   | <0.0002  | 0.0008   | <0.0002  | <0.0002 0  | .0008  | <0.0002 | <0.001 | < 0.0002 | <0.0002  | < 0.0002 | < 0.0002 | <0.0002  | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005 | < 0.0005 | < 0.0005 < | 0.0002 | <0.0002  | < 0.0002 | < 0.0005 | <0.0005  | <0.0005  | <0.0005  | 0.0455 | -    |
| HH_BH04_0.25_190725     |            | EB1919840    | Normal     |        | 0.0217 |          | 0.0002   | <0.0002  | < 0.0002 | <0.0002 <0 | 0.0002 | <0.0002 | <0.001 | < 0.0002 | <0.0002  | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005 | < 0.0005 | < 0.0005 < | 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | <0.0005  | <0.0005  |          | 0.0219 | -    |
| HH_BH04_0.5_190725      | 25/07/2019 | EB1919840    | Normal     | 0.0198 | 0.0193 | 0.0005   | < 0.0002 | <0.0002  | <0.0002  | <0.0002 0  | .0006  | <0.0002 | <0.001 | <0.0002  | <0.0002  | < 0.0002 | < 0.0002 | <0.0002  | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005 | < 0.0005 | < 0.0005 < | 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005  | <0.0005  | 0.0204 | -    |
| HH_BH04_9.0_190725      | 25/07/2019 | EB1919840    | Normal     | 0.0012 | 0.0006 | 0.0006   | <0.0002  | <0.0002  | <0.0002  | <0.0002 <0 | 0.0002 | <0.0002 | <0.001 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | <0.0002  | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005 | <0.0005  | < 0.0005 < | 0.0002 | <0.0002  | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005  | <0.0005  | ).0012 | -    |
| PFAS by TOPA Analysis   |            |              |            |        |        |          |          |          |          |            |        |         |        |          |          |          |          |          |          |          |          |          |         |          |            |        |          |          |          |          |          |          |        |      |
| HH_SS1_0.5_190724       | 24/07/2019 | EB1921187-AC | Normal     | 0.148  | 0.148  | 0.0004   | 0.0016   | 0.0008   | <0.0002  | <0.0002 <0 | 0.0002 | <0.0002 | 0.00   | 0.0029   | 0.001    | 0.0016   | 0.0006   | <0.0002  | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | <0.0005 | < 0.0005 | <0.0005 <  | 0.0002 | <0.0002  | < 0.0002 | <0.0005  | < 0.0005 | <0.0005  | < 0.0005 | 0.159  | 0.16 |

Notes
Total Oxidisable Precursor Assay (TOPA)
'mg/kg' is milligrams per kilogram
'<' is less than limit of reporting
'-' not analysed

Table T5 Groundwater Analytical Results

Appendix B: Tables PFAS Detailed Site Investigation Home Hill Fire Station Project No: 60609758


|                                                    |                   | Sum (PFHxS + PFOS) | PFOS    | PFHxS  | РҒНхА  | PFOA   | PFBS   | PFPeS  | РГНрЅ  | PFDS   | PFBA  | РFРеА  | РҒНрА  | PFNA   | PFDcA  | PFUnA  | PFDoA  | PFTrDA | РҒТеДА | 4:2 FTS | 6:2 FTS | 8:2 FTS | 10:2 FTS | MeFOSAA | EtFOSAA | FOSA   | N-Et-FOSA | N-Me-FOSA | N-Et-FOSE | N-MeFOSE | Sum of PFAS | C14 Carboxylates<br>and C4 - C8<br>Sulfonates |
|----------------------------------------------------|-------------------|--------------------|---------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|----------|---------|---------|--------|-----------|-----------|-----------|----------|-------------|-----------------------------------------------|
|                                                    | Units             | ug/L               | μg/L    | μg/L   | μg/L   | μg/L   | μg/L   | μg/L   | μg/L   | μg/L   | μg/L  | ug/L   | μg/L   | ug/L    | μg/L    | μg/L    | μg/L     | μg/L    | μg/L    | μg/L   | μg/L      | μg/L      | μg/L      | ug/L     | μg/L        | μg/L                                          |
|                                                    | LOR               | 0.0003             | 0.0003  | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.002 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.001   | 0.001   | 0.001   | 0.001    | 0.0005  | 0.0005  | 0.0005 | 0.001     | 0.001     | 0.001     | 0.001 0  | 0.0003      | 0.01                                          |
| NEMP (HEPA, 2018) Human Health Drinking Water      |                   | 0.07               |         |        |        | 0.56   |        |        |        |        |       |        |        |        |        |        |        |        |        |         |         |         |          |         |         |        |           |           |           |          |             |                                               |
| NHMRC (2019) Human Health Recreational Water       |                   | 2.0                |         |        |        | 10.0   |        |        |        |        |       |        |        |        |        |        |        |        |        |         |         |         |          |         |         |        |           |           |           |          |             |                                               |
| NEMP (HEPA, 2018) Ecological Freshwater 99% Sp     | pecies Protection |                    | 0.00023 |        |        | 19.0   |        |        |        |        |       |        |        |        |        |        |        |        |        |         |         |         |          |         |         |        |           |           |           |          |             |                                               |
| Battley et al (2018) Ecological Freshwater 99% Spe | cies Protection   |                    | 0.051   |        |        |        |        |        |        |        |       |        |        |        |        |        |        |        |        |         |         |         |          |         |         |        |           |           |           |          |             |                                               |

| Sample ID          | Date      | Lab Report | Type       |      |      |       |        |        |        |        |        |         |        |        |        |        |         |         |         |         |         |         |        |         |         |         |         |         |         |         |         |         |       |       |
|--------------------|-----------|------------|------------|------|------|-------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|-------|
| PFAS by Standard A | nalysis   |            |            |      |      |       |        |        |        |        |        |         |        |        |        |        |         |         |         |         |         |         |        |         |         |         |         |         |         |         |         |         |       |       |
| HH MW01 190806     | 6/08/2019 | EB1921176  | Normal     | 0.15 | 0.06 | 0.090 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01  | < 0.05 | < 0.01 | < 0.01 | < 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.025 | < 0.01  | < 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.025 | < 0.025 | < 0.025 | < 0.025 | 0.146 |       |
| HH MW02 190806     |           |            | Normal     | 3.41 | 3.25 | 0.161 | 0.029  | 0.017  | 0.049  | 0.024  | < 0.01 | < 0.01  | < 0.05 | 0.015  | 0.021  | < 0.01 | < 0.01  | <0.01   | < 0.01  | < 0.01  | < 0.025 | < 0.01  | < 0.01 | < 0.01  | < 0.01  | < 0.01  | <0.01   | < 0.01  | < 0.025 | < 0.025 | < 0.025 | < 0.025 | 3.570 |       |
| HH QC106 190806    | 6/08/2019 | EB1921176  | Duplicate  | 3.44 | 3.29 | 0.149 | 0.029  | 0.013  | 0.047  | 0.024  | < 0.01 | < 0.01  | < 0.05 | 0.015  | 0.021  | < 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.025 | < 0.01  | < 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.025 | < 0.025 | < 0.025 | < 0.025 | 3.590 |       |
| HH QC206 190806    | 6/08/2019 | RN1244319  | Triplicate | 3.68 | 3.50 | 0.180 | 0.032  | 0.0075 | 0.041  | 0.024  | 0.0062 | < 0.001 | 0.0099 | 0.019  | 0.019  | <0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.002 | < 0.002 | < 0.001 | 1.500  | < 0.001 | < 0.001 | < 0.002 | < 0.002 | < 0.001 | < 0.002 | <0.002  | < 0.005 | < 0.005 | 8.927 |       |
| HH MW03 190806     | 6/08/2019 | EB1921176  | Normal     | 5.10 | 4.40 | 0.699 | 0.072  | 0.048  | 0.047  | 0.068  | 0.026  | < 0.01  | < 0.05 | 0.034  | 0.046  | < 0.01 | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.025 | < 0.01  | 0.019  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.025 | < 0.025 | < 0.025 | < 0.025 | 5.460 |       |
| HH MW04 190806     | 6/08/2019 | EB1921176  | Normal     | 0.53 | 0.10 | 0.431 | 0.04   | 0.028  | 0.046  | 0.055  | 0.019  | < 0.002 | < 0.01 | 0.014  | 0.032  | 0.003  | < 0.002 | < 0.002 | < 0.002 | < 0.002 | < 0.005 | < 0.005 | <0.005 | < 0.005 | < 0.005 | < 0.002 | < 0.002 | < 0.002 | < 0.005 | <0.005  | <0.005  | < 0.005 | 0.768 |       |
| PFAS by TOPA Analy | /sis      |            |            |      |      |       |        |        |        |        |        |         |        |        |        |        |         |         |         |         |         |         |        |         |         |         |         |         |         |         |         |         |       |       |
|                    |           | EB1922105  | Normal     | 1.56 | 0.75 | 0.810 | 0.540  | 0.060  | 0.050  | 0.080  | 0.030  | < 0.02  | < 0.1  | 0.170  | 0.080  | < 0.02 | < 0.02  | < 0.02  | < 0.02  | < 0.02  | < 0.05  | < 0.05  | < 0.05 | < 0.05  | < 0.05  | < 0.02  | < 0.02  | < 0.02  | < 0.05  | < 0.05  | < 0.05  | < 0.05  | 2.570 | 2.570 |

Notes
TOPA is Total Oxidisable Precursor Assay
'µg/L' micrograms per litre
'<' less than the limit of reporting
'-' not analysed

Table T6 Sediment Analytical Results

Appendix B: Tables PFAS Detailed Site Investigation Home Hill Fire Station Project No: 60609758



| Sample ID       | Date      | Lab Report | Туре       |        |        |          |          |          |          |          |          |          |         |         |          |          |         |          |          |          |          |          |          |         |         |          |          |          |          |          |          |          |        |
|-----------------|-----------|------------|------------|--------|--------|----------|----------|----------|----------|----------|----------|----------|---------|---------|----------|----------|---------|----------|----------|----------|----------|----------|----------|---------|---------|----------|----------|----------|----------|----------|----------|----------|--------|
| HH_SED01_190806 | 6/08/2019 |            | Normal     | 0.0021 | 0.0021 | < 0.0002 | < 0.0002 | < 0.0002 | <0.0002  | <0.0002  | <0.0002  | <0.0002  | < 0.001 | <0.0002 | < 0.0002 | < 0.0002 | <0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | <0.0005  | <0.0005  | <0.0005  | <0.0005 | <0.0005 | <0.0002  | < 0.0002 | < 0.0002 | <0.0005  | <0.0005  | < 0.0005 | <0.0005  | 0.0021 |
| HH_QC107_190806 | 6/08/2019 | EB1921176  | Duplicate  | 0.0014 | 0.0014 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | <0.0002  | < 0.0002 | < 0.0002 | < 0.001 | <0.0002 | < 0.0002 | < 0.0002 | <0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | < 0.0005 | <0.0005 | <0.0005 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | 0.0014 |
| HH_QC207_190806 | 6/08/2019 | RN1244319  | Triplicate | 0.0026 | 0.0026 | <0.001   | <0.001   | <0.001   | < 0.001  | < 0.001  | < 0.001  | < 0.001  | < 0.002 | < 0.002 | < 0.001  | < 0.001  | < 0.001 | < 0.002  | <0.002   | < 0.002  | < 0.002  | < 0.001  | <0.001   | <0.001  | < 0.002 | < 0.002  | < 0.002  | < 0.001  | <0.002   | < 0.002  | < 0.005  | < 0.005  | 0.0026 |
| HH SED02 190806 | 6/08/2019 | EB1921176  | Normal     | 0.0004 | 0.0004 | < 0.0002 | < 0.0002 | 0.0002   | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.001 | 0.0003  | 0.0002   | 0.0005   | 0.0006  | 0.0006   | 0.0002   | < 0.0002 | < 0.0005 | < 0.0005 | < 0.0005 | <0.0005 | <0.0005 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | 0.003  |

### Notes

**AECOM** 

'mg/kg' is milligrams per kilogram
'<' less than the limit of reporting

'-' not analysed

# Appendix C

**Photographs** 



# **PHOTOGRAPHIC LOG**

Site Name:<br/>Home Hill Fire StationSite Location:<br/>83 Tenth Avenue, Home Hill, QueenslandProject No:<br/>60609758

1 13/02/2019
Direction Photo Taken:
N/A

Date:

## Description:

Plate No.

20L Class B foam drums stored in the workshop / storage shed adjoining the engine room.



# **PHOTOGRAPHIC LOG**

Site Name:
Home Hill Fire Station

Site Location:
83 Tenth Avenue, Home Hill, Queensland

Project No:
60609758

Plate No. Date: 13/02/2019

**Direction Photo Taken:**North

# Description:

Concrete hardstand area outside workshop / storage, used for vehicle wash-down. AST in the background is used for drafting training.





# **PHOTOGRAPHIC LOG**

Site Name:

Plate No.

Home Hill Fire Station

Site Location:

Site Location:

83 Tenth Avenue, Home Hill, Queensland

Project No: 60609758

**Project No:** 

60609758

13/02/2019 Direction Photo Taken: Southeast

Date:

Description: Location of decommissioned Case 4 Pit formerly used for drafting training.



# **PHOTOGRAPHIC LOG**

Site Name: Home Hill Fire Station

Plate No. Date: 13/02/2019

**Direction Photo Taken:** Northeast

# Description:

View along the length of the site towards Eleventh Avenue. The grassed area on the left hand side of the photograph is used for foam training. Some surface staining on the concrete hardstand is visible in the foreground.





# **PHOTOGRAPHIC LOG**

Site Name: Home Hill Fire Station

Plate No. Date: 06/08/2019 Site Location:

**Direction Photo Taken:** North

## Description:

Location of SED01 along earthern drain along the southern site boundary.



# PHOTOGRAPHIC LOG

**Project No:** 

Site Name: Site Location: Home Hill Fire Station

Plate No. Date: 06/08/2019

**Direction Photo Taken:** N/A

# Description:

Location of sampling point SED02, which was collected from an earthen drain.



# Appendix D

**Bore Logs** 

# HH\_BH01/HH\_MW01

ENSR Australia Pty Ltd Level 5, 828 Pacific Highway

Gordon NSW 2073 PROJECT NUMBER 60609758 **DATE** 24/7/2019 
 BLANK
 0.0 - 7.0 m bgs

 SCREEN
 7.0 - 10.0 m bgs.
 PROJECT NAME QFES PFAS DSIs - Home Hill LOCATION 83 Tenth Avenue, Home Hill, 4806 **GRAVEL PACK** 6.5 - 10.0 m bgs. DRILLING METHOD Hand Auger, Push tube and SSA SAMPLING METHOD Grab & Push Tube SANITARY SEAL/BENTONITE 4.5 - 6.5 m bgs. SURFACE ELEVATION 12.471 m AHD WELL HEAD/TOC LOGGED BY C. McCosker **NORTHING** 7825995.2 EASTING 543616.7 COMMENTS

|                          | PID (ppm) | Penetrometer (Kg/cm2) RECOVERY | SAMPLE<br>NUMBER                       | ANALYSED | DEPTH<br>(m BGL) | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION                                              | CONTACT<br>DEPTH | WELL DIAGRAM        |
|--------------------------|-----------|--------------------------------|----------------------------------------|----------|------------------|----------------|---------------------------------------------------------------------|------------------|---------------------|
|                          | 0.0       | ₩.                             | HH_BH01_0.1_<br>190724                 | *        |                  |                | FILL: Silty CLAY loam, grey, dry, soft, no plasticity.              |                  |                     |
|                          | 0.0       | ₹                              | HH_BH01_0.5_<br>190724                 |          |                  |                |                                                                     | 0.80             |                     |
|                          | 0.0       | **                             | HH_BH01_1.0_<br>190724                 | *        | 1.0              |                | Silty SAND, dark brown, dry, medium dense, fine grained.            | 1.35             |                     |
|                          | 0.0       | *                              | HH_BH01_1.5_<br>190724                 |          |                  |                | SAND, light brown-orange, dry, medium dense, medium grained.        | 1.00             |                     |
|                          | 0.0       | *                              | HH_BH01_2.0_<br>190724                 |          | 2.0              |                |                                                                     |                  | Grout               |
|                          | 0.0       | **                             | HH_BH01_3.0_<br>190724                 |          | 3.0              |                |                                                                     | 2.60             |                     |
|                          | 0.0       | **                             | HH_BH01_3.8_<br>190724<br>HH_BH01_4.0_ |          |                  |                | Silty CLAY, brown, slightly moist, firm, low plasticity.            | _3.60<br>_3.90   | Casing              |
|                          | 0.0       | **                             | 190724                                 |          | 4.0              |                | Clayey SAND, brown, dry, medium dense, medium grained.              |                  |                     |
|                          | 0.0       | **                             | HH_BH01_5.0_<br>190724                 |          | 5.0              |                | SAND, light brown-orange, dry, medium dense, medium-coarse grained. | _4.60            | —Bentonite          |
|                          | 0.0       | **                             | HH_BH01_6.0_<br>190724                 |          | 6.0              |                |                                                                     |                  | Bentome             |
|                          | 0.0       | <u>**</u>                      | HH_BH01_7.0_<br>190724                 |          | 7.0              |                | Coarse grained @ 6.80m bgs.                                         |                  |                     |
|                          | 0.0       | ₩.                             | HH_BH01_8.0_<br>190724                 |          | 8.0              |                | Wet @ 8.40m bgs.                                                    | ¥                | Filter Sands Screen |
| iPJ 16/12/19             | 0.0       | ×                              | HH_BH01_9.0_<br>190724                 | *        | 9.0              |                | Moist, trace of fine-medium sub-rounded gravels @ 9.00m bgs.        |                  | Screen              |
| BORELOGS_HH.GPJ 16/12/19 | 0.0       | ×                              | HH_BH01_10.0_<br>190724                |          |                  |                | End of hole at target depth.<br>Total Depth: 10.00 m                | _10.00           | PAGE 1 OF 1         |

# HH\_BH02/HH\_MW02

ENSR Australia Pty Ltd Level 5, 828 Pacific Highway

Gordon NSW 2073 PROJECT NUMBER 60609758 **DATE** 24/7/2019 
 BLANK
 0.0 - 7.0 m bgs

 SCREEN
 7.0 - 10.0 m bgs.
 PROJECT NAME QFES PFAS DSIs - Home Hill LOCATION 83 Tenth Avenue, Home Hill, 4806 **GRAVEL PACK** 6.5 - 10.0 m bgs. DRILLING METHOD Hand Auger, Push tube and SSA SAMPLING METHOD Grab & Push Tube SANITARY SEAL/BENTONITE 4.5 - 6.5 m bgs. SURFACE ELEVATION 12.114 m AHD WELL HEAD/TOC **NORTHING** 7826003 LOGGED BY C. McCosker **EASTING** 543635.5 COMMENTS \_

| PID (ppm)                     | Penetrometer (Kg/cm2) RECOVERY | SAMPLE<br>NUMBER        | ANALYSED | DEPTH<br>(m BGL) | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION                                                 | CONTACT | WELL DIAGRAM  |
|-------------------------------|--------------------------------|-------------------------|----------|------------------|----------------|------------------------------------------------------------------------|---------|---------------|
| 0.0                           | **                             | HH_BH02_0.1_<br>190725  |          |                  |                | FILL: Silty SAND loam, dark brown, dry, loose, fine grained.           | 0.40    |               |
| 0.0                           | **                             | HH_BH02_0.5_<br>190725  | *        |                  |                | SAND, light brown-orange, dry, medium dense, fine grained.             | 0.80    |               |
| 0.0                           | **                             | HH_BH02_1.0_<br>190725  | *        | 1.0              |                | SAND, orange, very slightly moist, loose, medium grained.              | ]       |               |
| 0.0                           | *                              | HH_BH02_1.5_<br>190725  |          |                  |                |                                                                        |         |               |
| 0.0                           | *                              | HH_BH02_2.0_<br>190725  |          | 2.0              |                |                                                                        |         | Grout         |
| 0.0                           | **                             | HH_BH02_3.0_<br>190725  |          | 3.0              |                | Silty CLAY, brown, dry, stiff, low plasticity.                         | 3.10    |               |
| 0.0                           | *                              | HH_BH02_4.0_<br>190725  |          |                  |                |                                                                        | 4.60    | Casing        |
| 0.0                           | **                             | HH_BH02_5.0_<br>190725  |          | 5.0              | (44244         | SAND, light brown-orange, dry, loose, medium-coarse grained.           | _ 4.00  | Bentonite     |
| 0.0                           | **                             | HH_BH02_6.0_<br>190725  |          | 6.0              |                |                                                                        |         | [···a] [···a] |
| 0.0                           | **                             | HH_BH02_7.0_<br>190725  |          | 7.0              |                | Coarse grained, trace of fine grained sub-rounded gravels @ 6.80m bgs. |         |               |
| 0.0                           | ***                            | HH_BH02_8.0_<br>190725  |          | 8.0              |                | No gravels @ 7.50m bgs. Slightly moist @ 8.00m bgs.                    | Ā       | Filter Sands  |
| 5J 16/12/19<br>.0             | ×                              | HH_BH02_9.0_<br>190725  | *        | 9.0              |                | Wet @ 8.40m bgs.                                                       | _       | Screen        |
| BORELOGS_HH.GPJ 16/12/19 0.00 | ×                              | HH_BH02_10.0_<br>190725 |          |                  |                | End of hole at target depth.<br>Total Depth: 10.00 m                   | _10.00  | PAGE 1 OF 1   |

# HH\_BH03/HH\_MW03

ENSR Australia Pty Ltd Level 5, 828 Pacific Highway

| PID (ppm)                | Penetrometer (Kg/cm2) RECOVERY | SAMPLE<br>NUMBER        | ANALYSED | DEPTH<br>(m BGL) | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION                                                                     | CONTACT | WELL DIAGRAM        |
|--------------------------|--------------------------------|-------------------------|----------|------------------|----------------|--------------------------------------------------------------------------------------------|---------|---------------------|
| 0.0                      | **                             | HH_BH03_0.1_<br>190725  | *        |                  |                | FILL: Silty SAND loam, dark brown, dry, loose, fine grained.                               | 0.35    |                     |
| 0.0                      | <b>*</b> **                    | HH_BH03_0.5_<br>190725  |          |                  |                | DISTURBED NATURAL: Silty SAND, brown, dry, medium dense, medium grained.                   | 0.70    |                     |
| 0.0                      | **                             | HH_BH03_1.0_<br>190725  | *        | 1.0              |                | SAND, light brown-orange, dry, medium dense, medium grained.                               |         |                     |
| 0.0                      | *                              | HH_BH03_1.5_<br>190725  |          |                  |                | Medium-coarse grained @ 1.20m bgs.                                                         |         |                     |
| 0.0                      | *                              | HH_BH03_2.0_<br>190725  |          | 2.0              |                | Slightly moist @ 2.20m bgs.                                                                |         | Grout               |
| 0.0                      | ***                            | HH_BH03_3.0_<br>190725  |          | 3.0              |                | Sandy CLAY, brown, grey mottle, dry, firm, no plasticity, fine-medium grained sand.        | 2.90    |                     |
| 0.0                      | ***                            | HH_BH03_4.0_<br>190725  |          | 4.0              |                | Stiff, low plasticity @ 3.60m bgs.  Coarse grained sand @ 4.30m bgs.                       |         | Casing              |
| 0.0                      | ***                            | HH_BH03_5.0_<br>190725  |          | 5.0              |                | SAND, light brown-orange, dry, loose, medium grained.                                      | 4.80    | - Bentonite         |
| 0.0                      | **                             | HH_BH03_6.0_<br>190725  |          | 6.0              |                | Medium-coarse grained @ 5.90m bgs.                                                         |         | - Bentonite         |
| 0.0                      | **                             | HH_BH03_7.0_<br>190725  |          | 7.0 —            |                | Coarse grained @ 6.80m bgs. Slightly moist, trace of fine sub-rounded gravels @ 7.00m bgs. |         |                     |
| 0.0                      | <b>**</b>                      | HH_BH03_8.0_<br>190725  |          |                  |                | With fine sub-rounded gravels @ 8.00m bgs. Wet @ 8.40m bgs.                                | Ž<br>Ž  | Filter Sands Screen |
| .GPJ 16/12/19            |                                | HH_BH03_9.0_<br>190725  | *        | 9.0              |                | Trace of fine-medium sub-rounded gravels @ 9.10m bgs.                                      |         |                     |
| BORELOGS_HH.GPJ 16/12/19 | $\geq$                         | HH_BH03_10.0_<br>190725 |          | <br><br>10.0     |                | End of hole at target depth.<br>Total Depth: 10.00 m                                       | 10.00   | PAGE 1 OF 1         |

# HH\_BH04/HH\_MW04

ENSR Australia Pty Ltd Level 5, 828 Pacific Highway

Gordon NSW 2073 PROJECT NUMBER 60609758 **DATE** <u>25/7/2019</u> PROJECT NAME QFES PFAS DSIs - Home Hill **BLANK** 0.0 - 6.0 m bgs LOCATION 83 Tenth Avenue, Home Hill, 4806 **SCREEN** 6.0 - 9.0 m bgs. DRILLING METHOD Hand Auger, Push tube and SSA GRAVEL PACK 5.5 - 9.0 m bgs. SAMPLING METHOD Grab & Push Tube SURFACE ELEVATION 12.325 m AHD SANITARY SEAL/BENTONITE 3.5 - 5.5 m bgs. WELL HEAD/TOC **NORTHING** 7825992.9 LOGGED BY C. McCosker 543639.4 EASTING COMMENTS

|                          | PID (ppm) | Penetrometer (Kg/cm2) | RECOVERY   | SAMPLE<br>NUMBER                                  | ANALYSED | DEPTH<br>(m BGL) | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION                                                                                               | CONTACT<br>DEPTH        | WELL DIAGRAM        |
|--------------------------|-----------|-----------------------|------------|---------------------------------------------------|----------|------------------|----------------|----------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|
|                          | 0.0       | 4                     | <b>8</b> 5 | HH_BH04_0.25_<br>190725<br>HH_BH04_0.5_<br>190725 | *        |                  |                | CONCRETE  DISTURBED NATURAL: Silty SAND, light brown-orange, dry, medium dense, medium grained.                      | _0.20<br>_0.40<br>_0.80 |                     |
|                          | 0.0       |                       | <b>8</b>   | HH_BH04_1.0_<br>190725                            |          | 1.0              | XXXX           | FILL: Silty SAND, black, dry, loose, fine-medium grained, trace of waste fill including glass and plastic.           | _0.00                   |                     |
|                          | 0.0       | -                     | <b>6</b> 5 | HH_BH04_1.5_<br>190725                            |          |                  |                | SAND, orange, dry, loose, medium grained. With coarse sub-rounded gravels and cobbles @ 1.30m bgs.                   |                         | Grout               |
|                          | 0.0       |                       | ₹          | HH_BH04_2.0_<br>190725                            |          |                  |                | 1.00m 2gc.                                                                                                           |                         |                     |
|                          | 0.0       | -                     | <b>®</b>   | HH_BH04_3.0_<br>190725                            |          | 3.0              |                | Sandy CLAY, brown, dry, firm, no plasticity.                                                                         | _2.90                   | Casing              |
|                          | 0.0       | -                     | <b>®</b>   | HH_BH04_4.0_<br>190725                            |          | 4.0              |                | Slightly moist @ 3.40m bgs.  Dry, stiff, low plasticity @ 3.70m bgs.                                                 |                         |                     |
|                          | 0.0       |                       | <b>*</b>   | HH_BH04_5.0_<br>190725                            |          | 5.0              |                | Very slightly moist @ 4.30m bgs.  SAND, light brown-orange, dry, medium dense, medium grained.                       | _4.60                   | ⊢Bentonite          |
|                          | 0.0       | 4                     | <b>3</b>   | HH_BH04_6.0_<br>190725                            |          | 6.0              |                | With brown, grey mottled clay pockets @ 5.40m bgs.  No clay pockets, medium-coarse grained @ 5.90m bgs.              |                         |                     |
|                          | 0.0       | -                     | <b></b>    | HH_BH04_7.0_<br>190725                            |          | 7.0              |                | Trace of fine grained sub-angular gravels @ 6.80m bgs. Trace of fine-coarse grained sub-rounded gravels @ 7.00m bgs. |                         | Filter Sands Screen |
|                          | 0.0       | -                     | <b>8</b>   | HH_BH04_8.0_<br>190725                            |          | 8.0 —            |                | Coarse grained @ 7.90m bgs.                                                                                          | Ţ<br>Ţ                  |                     |
| J 16/12/19               | 0.0       | 2                     | ×          | HH_BH04_9.0_<br>190725                            | *        | 9.0              |                | Wet @ 8.40m bgs.                                                                                                     | <del></del> -           |                     |
| BORELOGS_HH.GPJ 16/12/19 | 0.0       | 2                     | Z          | HH_BH04_10.0_<br>190725                           |          |                  |                | End of hole at target depth. Collapse to 9.00m bgs, well installed at this depth.                                    | _10.00                  |                     |

## AECOM Australia Pty Ltd Level 8, 540 Wickham Stree **BOREHOLE LOG** HH\_SS1 **AE**COM Fortitude Valley, QLD 4006 PROJECT NUMBER 60609758 DATE 24/07/2019 QFES PFAS DSIs - Home Hill 83 Tenth Avenue, Home Hill, 4806 PROJECT NAME **LOCATION DRILLING METHOD** Hand Auger SAMPLING METHOD Grab **LOGGED BY** C. McCosker **COMMENTS** RECOVERY GRAPHIC LOG SAMPLE NUMBER ANALYSED DEPTH (m BGS) PID (ppm) USCS CLASS LITHOLOGIC DESCRIPTION SW-SM FILL: Silty SAND loam, dark brown, dry, loose, fine grained. 0.0 |\mathred{M}\_\rightarrow | HH\_SS1\_0.1\_190724 | \\* Silty SAND, light brown-orange, loose, fine-medium grained. MH\_SS1\_0.5\_190724 \*\* 0.0 End of hole at target depth. Total Depth: 0.50 m BORELOGS\_HH.GPJ 16/12/19

## AECOM Australia Pty Ltd Level 8, 540 Wickham Stree **BOREHOLE LOG** HH\_SS3 **AE**COM Fortitude Valley, QLD 4006 PROJECT NUMBER 60609758 DATE 24/07/2019 QFES PFAS DSIs - Home Hill 83 Tenth Avenue, Home Hill, 4806 PROJECT NAME **LOCATION DRILLING METHOD** Hand Auger SAMPLING METHOD Grab **LOGGED BY** C. McCosker **COMMENTS** RECOVERY ANALYSED GRAPHIC LOG SAMPLE NUMBER DEPTH (m BGS) PID (ppm) USCS CLASS LITHOLOGIC DESCRIPTION SW-SM FILL: Silty SAND, brown, dry, loose, fine grained, trace of medium grained angular gravels. 0.0 MH\_SS3\_0.1\_190724 No gravels. MH\_SS3\_0.5\_190724 0.0 End of hole at target depth. Total Depth: 0.50 m BORELOGS\_HH.GPJ 16/12/19

# Appendix E

## Fieldsheets and Calibration Certificates

## **FQM - Groundwater Sampling and Purging Record**

Q4AN(EV)-405-FM1

| Project Name:     | In                         | FEC 014: 1:     |                          |               |                        | and the same                |                                              |                    |                                          |               |                                                             | Bore ID:                          | MW           | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|----------------------------|-----------------|--------------------------|---------------|------------------------|-----------------------------|----------------------------------------------|--------------------|------------------------------------------|---------------|-------------------------------------------------------------|-----------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                            | FES GW M        | ionitoring               |               | ect Number:            | 60609758                    | 1                                            | PM Nan             |                                          |               |                                                             | Sample Date:                      |              | 3/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Client:           |                            | FES             | e Informatio             |               | ect Location:          | Home                        |                                              | Marine Sales       | ork Staff:                               |               |                                                             | Well Development or               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date of GW Le     | vel:<br>n-pvc): 🖇          | 3 <b>45</b> 2.  | Bore Radii<br>Screen Int | us (mm):      | 100                    |                             | ameter Info.<br>I No.: 19 C 101<br>I: 441 pw | 112 FU D           | ntamination<br>econtaminated<br>edicated | FV            | Sampling Method  Low Flow Pump rate: 3 4  Intake depth: 4.5 | Hydrasleeve Size:                 | drasleeve    | e info. Monitoring sequence followed (number in order):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Bore Depth (m-    | -pvc): 10-                 | 003             | Casing Ra                | dius (mm):    | 50                     | Corrected Red               | ox: Y / N                                    | FI D               | isposable                                | FI            | Bailer FI Hydrasleev                                        |                                   | pvc):        | Gauging,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Depth to Produ    | ct (m-pvc):                | -               | Cover Typ                | e (gatic)stic | ck up):                | (The correction to          | apply is probe de                            | pendent) II O      | ther (specify)                           |               | Peristaltic Pump Waterra                                    | Hydrasleeve Install               | time:        | Hydraşleeve in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Product Thickne   | ess (m):                   |                 | Bore Lock                | ed (YES/N     | <b>O</b> ):            | Parameter met               | hod: FI Dow                                  | nhole              |                                          |               | Other (specify)                                             | Sampling Start Time               | ):           | Hydrasleeve out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                            |                 | Key Type                 | (if applicab  | le): —                 |                             | FI Retr                                      | ieved              |                                          |               |                                                             |                                   |              | Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Calculated bo     | re volume (L               | _):             | Includes/                | excludes      | bore annulus (d        | circle)                     | # purge volum                                | nes removed:       |                                          | Total         | purged volume (L):                                          |                                   |              | and the second s |
| EL RODO EN PROPE  |                            |                 |                          |               |                        |                             | Water                                        | Quality Para       | meters                                   |               |                                                             |                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time              | Cumulative V<br>Removed (L | STOCKE TO STOCK | VL<br>pvc) Pu            | ımp Rate      | DO<br>(ppm or mg/L)    | E.C.<br>(mS/cm or<br>μS/cm) | На                                           | Redox<br>(mV)      | Temp °C                                  |               |                                                             | Odour, Colour, Turbidity          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12:17             | _                          | 8.3             | 72                       | _             |                        | _                           | _                                            | _                  | _                                        |               |                                                             |                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12:20             | 0.5                        | 11              | P                        | ent           | 5.45                   | 468-8                       | 6.43                                         | 138-7              | 27.7                                     |               | Clear = no ode                                              | ou, no sheer                      | 2 2 /-       | 11 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12:23             | 1.5                        | 1               |                          | 11            | 5.18                   | 466.5                       | 6.41                                         | 137.9              | 27.7                                     |               | 16                                                          | of the                            | i; pale      | ye wow proup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 12:26             | 2.75                       | N'              | \                        | L× .          | 5.05                   | 466.4                       | 6.40                                         | 138-3              | 27.7                                     |               | 16                                                          |                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12:29             | 3.0                        |                 | i,                       | 1-            | 1                      |                             | 6.39                                         |                    |                                          |               | L\                                                          |                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10-6-             | 7.0                        |                 | 7                        | 1 1           | 5.20                   | 467.5                       | 100                                          | 138.9              | 27.7                                     |               |                                                             |                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | -                          |                 | Samp                     | ua            | @ 12                   | 30 Q                        | 36.                                          |                    |                                          | _             |                                                             |                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                            |                 |                          |               |                        |                             |                                              |                    |                                          |               |                                                             |                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                            |                 |                          |               |                        |                             |                                              |                    |                                          |               |                                                             |                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                            |                 |                          |               |                        |                             |                                              |                    |                                          |               |                                                             |                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                            |                 |                          |               |                        |                             |                                              |                    |                                          |               |                                                             |                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                            |                 |                          |               |                        |                             |                                              |                    | <u> </u>                                 | $\dashv$      |                                                             | .81 3                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                            |                 |                          |               |                        | -                           |                                              |                    |                                          | $\rightarrow$ |                                                             |                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                            |                 |                          |               |                        |                             |                                              |                    | -                                        | _             |                                                             |                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| transfer mentals  |                            | Accentab        | le Paramete              | r Danga:      | ± 10%                  | ± 3%                        | ± 0.05                                       | ± 10 mV            |                                          |               |                                                             |                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analyt            | es Sampled                 |                 | ie raramete              | r Kange.      | Bottles Col            |                             | 10.05                                        |                    | ± 0.2 °C                                 | -             | ± 10%                                                       | % turbidity (if using a turbidity | meter)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Field Filtered:   | Unfiltere                  |                 |                          |               | TTT                    |                             |                                              |                    | ac illioilliatio                         | 10            |                                                             | Field Commets                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| , ioid i intoreu. | Ommere                     |                 |                          | L Vial (HCI)  |                        | nL Ferrous                  | x 60 mL metals (H                            | INO <sub>3</sub> ) | //                                       | - 1           | Bore volume calculation                                     | n, bore condition, fate of tubi   | ng, redox co | rrection etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| //                |                            |                 | x 40 m                   | L Vial (H₂S0  | D <sub>4</sub> ) x 100 | mL Amber                    | x 250 mL Plastic                             |                    |                                          |               |                                                             |                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20                |                            |                 | H                        |               |                        |                             |                                              |                    |                                          | - 1           |                                                             |                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                            |                 |                          | Ap            | proval and Distrib     | oution                      |                                              |                    |                                          |               |                                                             |                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fieldwo           | rk Staff Sign:             | ature           |                          | Date          |                        | Checker Na                  | me and Signati                               | uro                | Date                                     |               |                                                             |                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                            |                 |                          |               |                        | OHOUNGI NO                  | and orginal                                  | uit                | Date                                     |               |                                                             |                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Projec            | ct Manager Si              | ignature        | _                        | Date          | Distril                | bution: Project Ce          | ntral File                                   |                    |                                          |               |                                                             |                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## **FQM - Groundwater Sampling and Purging Record**

Q4AN(EV)-405-FM1

| William Willia |                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                |                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                     |                                    |                                                                                                                                        | Bore ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MUO             | 2                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|
| Project Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  | S GW Mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | itoring <b>Proje</b>                                                                                                                           | ct Number:             | 6060975                                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PM Name                                 |                                    | James Peachey                                                                                                                          | Sample Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6/8             |                       |
| Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | QFE                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                | ct Location:           | Ho                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fieldwork                               | Staff:                             | NK                                                                                                                                     | Well Development o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r Well Sam      | pling Event? (circle) |
| Date of GW Lev Depth to GW (m- Bore Depth (m- Depth to Product Product Thickne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vel: 6 / 8 / 19<br>nn-pvc): 8 0 3<br>pvc): (0 0 1<br>ct (m-pvc): —<br>ess (m): — | 9 4320<br>2 1249<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bore Radius (mm): Screen Interval (m): Casing Radius (mm). Cover Type (gatic/still Bore Locked (YES/N Key Type (if applicab Includes/ excludes | ck up):<br>D):<br>le): | Chem Kit Seria<br>Chem Kit Mode<br>Corrected Rec<br>(The correction to<br>Parameter me |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dec | dicated  posable  er (specify)  F1 | Sampling Method  Low Flow Pump rate: 3/4  Intake depth: 1 Hydrasler  Peristaltic Pump Waterra  Other (specify)  All purged volume (L): | Hydrasleeve Size: Hydrasleeve Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ydrasleeve      |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | molades/ excludes                                                                                                                              | bore armaias (c        | on die j                                                                               | AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUM | Quality Param                           |                                    | ai puiged voidine (L).                                                                                                                 | The state of the s |                 |                       |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cumulative Vol.<br>Removed (L)                                                   | SWL<br>(m-pvc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pump Rate                                                                                                                                      | DO<br>(ppm or mg/L)    | E.C.<br>(mS/cm or<br>μS/cm)                                                            | рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Redox<br>(mV)                           | Temp °C                            |                                                                                                                                        | Odour, Colour, Turbidi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ty              |                       |
| 12:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                | 8-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | & Peri                                                                                                                                         | _                      |                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | _                                  |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                       |
| 12:55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                                                              | 8.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                | 5.01                   | 680                                                                                    | 6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 145.4                                   | 27.9.                              | Clear no od                                                                                                                            | ar, no sheer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.             | (1 11                 |
| 12:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.25                                                                             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ``                                                                                                                                             | 5.22                   | 680                                                                                    | 6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 144.5                                   | 28-0                               | 1                                                                                                                                      | ar, in shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1, paro         | - yellow/brown        |
| 13:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N.                                                                                                                                             | 4.72                   | 679                                                                                    | 6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 144.5                                   | 27.8                               | 27                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                       |
| 13:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                              | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                             | 4.96                   | 677                                                                                    | 6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 143.9                                   | 27.8                               | 11                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sampl                                                                                                                                          | 10                     | 2-50                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1305                                    | 270                                |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                              |                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                    |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                    |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                    |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                    |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                    |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                    |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                    |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                       |
| Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  | Maria Carlos de la Carlo de la | Parameter Range:                                                                                                                               |                        | ± 3%                                                                                   | ± 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ± 10 mV                                 | ± 0.2 °C                           | 10-2 (1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-                                                                                           | 0% turbidity (if using a turbidi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ty meter)       | ACAMADA MARA          |
| Field Filtered:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | es Sampled fo                                                                    | LTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                | Bottles Col            |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1                                     | C Information                      |                                                                                                                                        | Field Commets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                       |
| riela Filterea.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unintered:                                                                       | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x 40 mL Vial (HCI)                                                                                                                             |                        | nL Ferrous                                                                             | x 60 mL metals (H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 20106_19080<br>20206_1908          |                                                                                                                                        | tion, bore condition, fate of tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bing, redox cor | rection etc.          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/                                                                               | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x 40 mL Vial (H₂S0                                                                                                                             | D <sub>4</sub> ) x 100 | mL Amber 3                                                                             | x 250 mL Plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | 2000-1400                          | 0,6                                                                                                                                    | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                    |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ap                                                                                                                                             | proval and Distrib     | oution                                                                                 | THE ASSESSED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                    |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                       |
| Fieldwor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rk Staff Signatu                                                                 | re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date                                                                                                                                           | -                      | Checker N                                                                              | ame and Signatu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ire                                     | Date                               | 2                                                                                                                                      | //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |                        | oncondi N                                                                              | ame und orginati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | Date                               | /                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                       |
| Projec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t Manager Sign                                                                   | ature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date                                                                                                                                           | Distrib                | bution: Project Co                                                                     | entral File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                    |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                       |

ANZ

## FQM - Groundwater Sampling and Purging Record

Q4AN(EV)-405-FM1 forn Bore ID: mw 03 6/8/19

| Project Name:  | QFE                            | ES GW Mon       | itoring            | Project Number:     | 6060975                     | 8                   | PM Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | James Peachey            | Bore ID:<br>Sample Date:            | 6/8/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------|--------------------------------|-----------------|--------------------|---------------------|-----------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client:        | QFE                            | ES              | ,                  | Project Location:   | Hom                         |                     | Fieldworl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NK                       |                                     | Well Sampling Event? (circle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | Gene                           | eral Bore I     | nformation         |                     |                             | ameter Info.        | THE RESIDENCE OF THE PARTY OF T | tamination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sampling Method          |                                     | drasleeve info.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date of GW Le  | vel: 6/8/19                    | ~1340           | Bore Radius (mn    | 1): 260 mm?         | Chem Kit Seria              | al No.: 19410       | 100 8-1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low Flow Pump rate: 3/4  |                                     | Monitoring sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Depth to GW (r | m-pvc): 7.90                   |                 | Screen Interval (  |                     | Chem Kit Mode               | el: 461 Puo pl      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dicated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Intake depth:            |                                     | followed (number in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bore Depth (m- | -pvc): 10 0                    | 92              | Casing Radius (r   | nm): 50 mm          | Corrected Red               | 100                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bailer                   |                                     | order): / pvc): Gauging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Depth to Produ | ict (m-pvc):                   |                 | Cover Type (gati   | /stick up):         | (The correction t           | o apply is probe de | 60 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | er (specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Peristaltic Pump Waterra | Hydrasleeve Install to              | , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Product Thickn | ess (m):                       | _               | Bore Locked (YE    | S/NO):              | Parameter me                | thod: FI Dow        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Other (specify)          | Sampling Start Time                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                |                 | Key Type (if appl  | icable): _          |                             | FI Retr             | rieved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Outer (Specify)          | / Jamping Gunt / mis                | Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Calculated bo  | ore volume (L):                |                 | Includes/ excludes | des bore annulus (  | circle)                     | # purge volun       | nes removed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | al purged volume (L):    |                                     | 1 didiffeters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                |                                |                 |                    | THE REAL PROPERTY.  |                             |                     | r Quality Param                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time           | Cumulative Vol.<br>Removed (L) | . SWL<br>(m-pvc | ) Pump Ra          | te DO (ppm or mg/L) | E.C.<br>(mS/cm or<br>μS/cm) | рН                  | Redox<br>(mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Temp °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | Odour, Colour, Turbidity            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13:49          | 0                              | 7.99            | 7 BARRE            | vi -                |                             | _                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                |                 | (3)4 hr            | ·                   |                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13:52          | 0.5                            | 8.00            |                    | 3.76                | 535                         | 6-39                | 152.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No adour I shee          | n clear pale                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13:55          | 1.5                            | 9.000           | 4 "                | 3.61                | 534                         | 6.37                | 153.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 doctor / succe       | 1 1                                 | yellow brown,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13:58          | 2-15                           | 11              | U.                 | 3.57                | 536                         | 6.3%                | 152.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *                        | some fine                           | Sand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14:01          | 3.0                            | 11              | 1                  | 3.32                | 536                         | 6.34                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                | (1              | - 1                |                     |                             | 10                  | 152.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )(                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14:04          | 3.50                           |                 |                    | 3-46                | 536                         | 6.39                | 152-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                | Sun             | rpled 6            | 0 [404              | @ 3.5                       | 1.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                |                 | 1                  |                     |                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                |                 |                    |                     |                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                |                 |                    |                     |                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                |                 |                    |                     |                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                |                 |                    |                     |                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Ac                             | cceptable       | Parameter Ran      | ge: ±10%            | ± 3%                        | ± 0.05              | ± 10 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ± 0.2 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ±1                       | 0% turbidity (if using a turbidity  | meter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Analyt         | es Sampled fo                  | or:             |                    | Bottles Co          | llected                     |                     | QA/Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RM ENGLISHMENT           | Field Commets                       | Thousand the second sec |
| ield Filtered: | Unfiltered:                    |                 | x 40 mL Vial (     | HCI) x 60 r         | mL Ferrous                  | x 60 mL metals (H   | THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSONS AND PE | //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bore volume calcula      | tion, bore condition, fate of tubir | ng, redox correction etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| //             | / /                            | /               | x 40 mL Vial (     |                     | mL Amber                    | x 250 mL Plastic    | 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ///                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Service Service          | , 20.0 consisting rate of tubil     | egi i odok domociion etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | //                             |                 |                    |                     |                             | A LOO HILL I Idollo |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 77.00          |                                |                 |                    |                     |                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                |                 |                    | Approval and Distri | bution                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Carrier and Carrier and Carri | //                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                |                 |                    |                     |                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | //                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fieldwo        | ork Staff Signatu              | ure             | Date               |                     | Checker N                   | ame and Signat      | ure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                |                 |                    |                     |                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Projec         | ct Manager Sign                | nature          | Date               | Distri              | bution: Project Co          | entral File         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

AN.

9.013

14:45

## FQM - Groundwater Sampling and Purging Record

Turned

Q4AN(EV)-405-FM1

| Project Name:                  | Q                          | FES GW M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | onitoring P                           | roject Number:                          | 6060975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58                                 | PM Name:           |              | James Peachey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                | W04<br>8/19                             |
|--------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------|
| Client:                        | Q                          | FES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P                                     | roject Location:                        | Hon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ne Hill                            | Fieldwork          | Staff:       | NK /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Well Development or Well S                     |                                         |
|                                | Ge                         | neral Bor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e Information                         | 100 100 100 100 100 100 100 100 100 100 | Par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rameter Info.                      | 3.3.3.3.3.3.3.3.3. | tamination   | Sampling Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hydrasie                                       |                                         |
| Date of GW Le<br>Depth to GW ( | 01 011                     | 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bore Radius (mm<br>Screen Interval (n |                                         | Chem Kit Seria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al No.: 19010/112<br>lel: 461 Rock |                    | ontaminated  | Low Flow Pump rate: 3/4 Intake depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hydrasleeve Size:                              | Monitoring sequence followed (number in |
| Bore Depth (m                  |                            | men                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Casing Radius (m                      |                                         | Corrected Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                    |              | Bailer FI Hydras                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                | order):                                 |
| Depth to Produ                 |                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cover Type (gatio                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to apply is probe depend           | Dist               | er (specify) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | Gauging                                 |
| Product Thickr                 | ness (m):                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bore Locked (YES                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ethod: FI Downho                   | Our                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | Hydrasleeve in                          |
|                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Key Type (if applic                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PI Retrieve                        |                    |              | Other (specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sampling Start Time:                           | Hydrasleeve out                         |
| Calculated bo                  | ore volume (L              | _):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | les bore annulus (                      | circle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # purge volumes                    |                    |              | Total purged volume (L):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                | Parameters                              |
|                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Interdees/ exerae                     | les bore armaias (                      | circle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    | uality Param       |              | rotal purged volume (L):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |                                         |
| Time                           | Cumulative V<br>Removed (L |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | e DO (ppm or mg/L)                      | E.C.<br>(mS/cm or<br>μS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | рН                                 | Redox<br>(mV)      | Temp °C      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Odour, Colour, Turbidity                       |                                         |
| 14:28                          | 0                          | 8.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 Peri (1)                            | 2) -                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                  |                    |              | clear, no ob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Level Charles                                  |                                         |
| 14:31                          | 8.5                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | turn                                  | 4.20                                    | 608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.44                               | 151.0              | 005          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | as /swell,                                     |                                         |
| 14:34                          | 0.75                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/                                    | 4.16                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    | 28.5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                         |
| 14:470                         | 1.25                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ASI ( )                               |                                         | 611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.44                               | 149.9              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                         |
|                                | N. 1                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 4.91                                    | 613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | 148.8              | 28.5         | went to 5 mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n nevanent as                                  | volume " 000                            |
| 14:40                          | 1.75                       | W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 4.22                                    | 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.44                               | 147.7              | 28.6         | TV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                | 0.1L/n,                                 |
| 14:50                          | 2.25                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                    | 4.36                                    | 610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.46                               | 148.4              | 28.3         | (Cloud cover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r became over                                  | 1 1 - 1                                 |
|                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Samol                                 | 1d @ 1450                               | @ 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 156.                               |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )                                              | 031 (01)                                |
| 77                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 700                                   | 100                                     | (a) L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,70.                              |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                         |
|                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                         |
|                                |                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                         |
|                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                         |
|                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                         |
|                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                         |
|                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del>                       |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                         |
| Provinces territor             |                            | Accentabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e Parameter Rang                      | ge: ±10%                                | ± 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ± 0.05                             | ± 10 mV            | ± 0.2 °C     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                         |
| Analy                          | tes Sampled                | the state of the s | e r drameter really                   | Bottles Col                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.05                              |                    | Information  | CONTRACTOR DESCRIPTION OF THE PARTY OF THE P | ± 10% turbidity (if using a turbidity meter)   |                                         |
| Field Filtered: /              | Unfiltere                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                         | Mississippi and the Control of the C |                                    |                    | intormation  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field Commets                                  |                                         |
| ricid i intered.               | Onnitere                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x 40 mL Vial (H                       |                                         | nL Ferrous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | x 60 mL metals (HNO                | 3)                 | 1/           | Bore volume calcu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ulation, bore condition, fate of tubing, redox | correction etc.                         |
| /                              |                            | //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x 40 mL Vial (F                       | 1 <sub>2</sub> SO <sub>4</sub> ) x 100  | mL Amber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | x 250 mL Plastic                   | _                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                         |
| 1                              | 1                          | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | _                  | 1/           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\bigcirc$                                     |                                         |
|                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Approval and Distril                    | nution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                    | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/1                                            | 1                                       |
|                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Approval allu Distril                   | Juuon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                    |              | 45.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |                                         |
| Fieldwa                        | ork Staff Signa            | ature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date                                  | _                                       | Chanks - N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                         |
| , iciawc                       | otan oigili                | acare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date                                  |                                         | Checker N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ame and Signature                  |                    | Date         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/                                             |                                         |
|                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                         |
| Proje                          | ct Manager Si              | gnature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date                                  | Distri                                  | bution: Project C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | entral File                        |                    |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                | - 1                                     |

## Oil / Water Interface Meter

Instrument

Interface Meter (30M)

Serial No.

224606



## Air-Met Scientific Pty Ltd 1300 137 067

| Item            | Test             | Pass     | Comments |
|-----------------|------------------|----------|----------|
| Battery         | Compartment      | 1        | Comments |
|                 | Capacity         | ✓        |          |
|                 |                  |          |          |
| Probe           | Cleaned/Decon.   | ✓        |          |
|                 | Operation        | ✓        |          |
| Connectors      | Condition        | ✓        |          |
|                 |                  | ✓        |          |
| Tape Check      | Cleaned          | ✓        |          |
|                 | Checked for cuts | <b>✓</b> |          |
| Instrument Teet | A4 af 1 1        |          |          |
| Instrument Test | At surface level | ✓        |          |
|                 |                  |          |          |
|                 |                  |          |          |
|                 |                  |          |          |
|                 |                  |          |          |
|                 |                  |          |          |
|                 |                  |          |          |

## Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

| Calibrated by:        |            | Nikhil Mruthyunjayappa |
|-----------------------|------------|------------------------|
| Calibration date:     | 15/07/2019 |                        |
| Next calibration due: | 13/00/2010 |                        |





## Air-Met Scientific Pty Ltd

ABN 73 006 849 949 Ph 1300 137 067

## Multi Parameter Water Meter

Instrument

YSI Quatro Pro Plus

Serial No.

11K100831

| Item          | Test                 | Pass     | Comments |
|---------------|----------------------|----------|----------|
| Battery       | Charge Condition     | <b>√</b> | Comments |
|               | Capacity             | ✓        |          |
| Switch/keypad | Operation            | ✓        |          |
| Display       | Intensity            | ✓        |          |
|               | Operation (segments) | <b>✓</b> |          |
|               | Seal                 | ✓        |          |
| Connectors    | Condition            | ✓        |          |
| Sensor        | 1. pH                | 1        |          |
|               | 2. mV                | ✓        |          |
|               | 3. EC/Temp.          | ✓        |          |
|               | 4. D.O               | ✓        |          |
| Alarms        | Beeper               | ✓        |          |
|               | Settings             | ✓        |          |
| Software      | Version              | ✓        |          |
| Data logger   | Operation            | ✓        |          |
| Download      | Operation            | ✓        |          |
| Other tests:  |                      |          |          |

## Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

| Sensor     | Serial no | Standard Solutions | Certified | Solution Bottle<br>Number | Instrument Reading |
|------------|-----------|--------------------|-----------|---------------------------|--------------------|
| 1. pH 7.00 |           | pH 7.00            | NIST      | 320613                    | pH 7.00            |
| 2. pH 4.00 |           | pH 4.00            | NIST      | 320612                    | pH 4.00            |
| 3. mV      |           | 240mV              | NIST      | 325420/325421             | 240mV              |
| 4. EC      |           | 2.76mS             | NIST      | 304153                    | 2.76mS             |
| 6. D.O     |           | 0 ppm              | NIST      | 5928                      | 0 ppm              |
| 7. Temp    |           | 22.6oC             | NIST      | MultiTherm 09000528       |                    |

Calibrated by:

Nikhil Mruthyunjayappa

Calibration date:

15-Jul-19

Next calibration due:

11-Jan-20

Instrument

PhoCheck Tiger

Serial No.

T-114169



## Air-Met Scientific Pty Ltd 1300 137 067

| Item          | Test                 | Pass     |         |        | Comment | ς         |
|---------------|----------------------|----------|---------|--------|---------|-----------|
| Battery       | Charge Condition     | <b>√</b> |         |        | Comment | 3         |
|               | Fuses                | ✓        |         |        |         |           |
|               | Capacity             | 1        |         |        |         |           |
|               | Recharge OK?         | ✓        |         |        |         |           |
| Switch/keypad | Operation            | ✓        |         |        |         |           |
| Display       | Intensity            | ✓        |         |        |         |           |
|               | Operation (segments) | 1        |         |        |         |           |
| Grill Filter  | Condition            | ✓        |         |        |         |           |
|               | Seal                 | ✓        |         |        |         |           |
| Pump          | Operation            | ✓        |         |        |         |           |
|               | Filter               | ✓        |         |        |         |           |
|               | Flow                 | ✓        |         |        |         |           |
|               | Valves, Diaphragm    | ✓        |         |        |         |           |
| PCB           | Condition            | ✓        |         |        |         |           |
| Connectors    | Condition            | ✓        |         |        |         |           |
| Sensor        | PID                  | ✓        | 10.6 ev |        |         |           |
| Alarms        | Beeper               | ✓        | Low     | High   | TWA     | STEL      |
|               | Settings             | ✓        | 50ppm   | 100ppm | 1       | - 1 ha ha |
| Software      | Version              | ✓        |         |        |         |           |
| Data logger   | Operation            | ✓        |         |        |         |           |
| Download      | Operation            | ✓        |         |        |         |           |
| Other tests:  |                      |          |         |        |         |           |

## Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Diffusion mode

Aspirated mode

| Sensor   | Serial no | Calibration gas and concentration | Certified | Gas bottle | Instrument Reading |
|----------|-----------|-----------------------------------|-----------|------------|--------------------|
| PID Lamp |           | 93ppm Isobutylene                 | NIST      | BR100      | 93.0ppm            |
|          |           | ooppiii loobatyleile              | 11101     | BICTOO     | 95.0ppm            |

Calibrated by:

Nikhil Mruthyunjayappa

Calibration date:

15/07/2019

Next calibration due:

14/08/2019

## **Gas Calibration Certificate**

Instrument

MX4

Serial No.

13054CJ-002

Sensors

CO, H2S, O2, LEL



## Air-Met Scientific Pty Ltd 1300 137 067

| Item          | Test                 | Pass     |        | Comi    | ments |       |
|---------------|----------------------|----------|--------|---------|-------|-------|
| Battery       | Charge Condition     | ✓        |        |         |       | ***   |
|               | Fuses                | ✓        |        |         |       |       |
|               | Capacity             | ✓        |        |         |       |       |
|               | Recharge OK?         | ✓        |        |         |       |       |
| Switch/keypad | Operation            | ✓        |        |         |       |       |
| Display       | Intensity            | ✓        |        |         |       |       |
|               | Operation (segments) | ✓        |        |         |       |       |
| Grill Filter  | Condition            | ✓        |        |         |       |       |
|               | Seal                 | 1        |        |         |       |       |
| PCB           | Condition            | ✓        |        |         |       |       |
| Connectors    | Condition            | ✓        |        |         |       |       |
|               |                      |          | Low    | High    | TWA   | STEL  |
| Sensor        | Oxygen               | ✓        | 19.50% | 23.50%  | N/A   | N/A   |
|               | Pentane              | ✓        | 5% LEL | 10% LEL | N/A   | N/A   |
|               | CO                   | ✓        | 30 ppm | 60 ppm  | 30ppm | 60ppm |
|               | H2S                  | <b>✓</b> | 10 ppm | 15 ppm  | 10ppm | 15ppm |
| Alarms        | Beeper               | <b>√</b> |        |         |       |       |
|               | Settings             | ✓        |        |         |       |       |
| Software      | Version              |          |        |         |       |       |
| Datalogger    | Operation            |          |        |         |       |       |
| Download      | Operation            |          |        |         |       |       |
| Other tests:  |                      |          |        |         |       |       |

## Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

| Serial no | Calibration gas and concentration | Certified                        | Gas bottle<br>No                           | Instrument Reading                                                                                                           |
|-----------|-----------------------------------|----------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
|           | Fresh Air                         |                                  | Fresh Air                                  | 20.90%                                                                                                                       |
|           | 25% LEL Pentane                   | NIST                             | BR133                                      | 25% LEL Pentane                                                                                                              |
|           | 100ppm                            | NIST                             | BR133                                      | 100ppm                                                                                                                       |
|           | 25ppm                             | NIST                             | BR133                                      | 25ppm                                                                                                                        |
|           |                                   |                                  |                                            |                                                                                                                              |
|           |                                   | Fresh Air 25% LEL Pentane 100ppm | Fresh Air 25% LEL Pentane NIST 100ppm NIST | Fresh Air         Fresh Air           25% LEL Pentane         NIST         BR133           100ppm         NIST         BR133 |

| Calibrated by:    |          | Braeden Curtis |
|-------------------|----------|----------------|
| Calibration date: | 16/07/19 |                |

16/07/19

Next calibration due:

15/01/2020 0:00



ANZ

## FQM - Water Quality Meter Calibration Record

Q4AN(EV)-410-FM1

| Project Name:              | Bowen Basi        | IN GME OF ES                              | Project Number:               |                                    | 60603041, 2.2 60 | 609758            |  |
|----------------------------|-------------------|-------------------------------------------|-------------------------------|------------------------------------|------------------|-------------------|--|
| Project Location:          | ANIE              | e heart Client:                           |                               |                                    | Arrow Energy QF  | ES                |  |
| PM Name:                   | Røb Bartlett      | Josh Radford Journa Fieldwork Staff Name: |                               |                                    |                  |                   |  |
| This calibration record is | intended to promp | t fieldwork staff to calibrate            | water quality meter (WQM) d   | aily before the start of fieldwork | ks.              | The second second |  |
| INSTRUMENT DET             | TAILS             |                                           |                               |                                    |                  |                   |  |
| Supplier:                  |                   | Arment                                    |                               |                                    |                  |                   |  |
| Make and Model:            |                   | 7GI Pw pl                                 | vs.                           |                                    |                  |                   |  |
| Serial Number:             |                   |                                           |                               |                                    |                  |                   |  |
| CALIBRATION                |                   |                                           |                               |                                    |                  |                   |  |
| CALIBRATE WITH CA          | ALIBRATION S      | OLUTIONS                                  |                               |                                    |                  |                   |  |
| Date and Time:             |                   | 10:00 8/8                                 | 3/19                          |                                    |                  |                   |  |
| Parameter                  |                   | A                                         | Acidity                       | Conductivity                       | Dissolve         | d Oxygen          |  |
| Units                      |                   | рН                                        | рН                            | μS/cm                              | ppm              | ppm               |  |
| Calibration Standard (     |                   | 4.0                                       | 7.0                           |                                    |                  |                   |  |
| Calibration Reading:       |                   | 4.0                                       | 7.01                          |                                    |                  | •••••             |  |
| Calibration Temperatu      | re:               | 249                                       | 24.6                          |                                    |                  |                   |  |
| ONGOING CHECK              | S                 |                                           |                               |                                    |                  | THE PARTY OF THE  |  |
| BUMP TEST WITH C           | ALIBRATION S      | OLUTION                                   |                               |                                    |                  |                   |  |
| Date and Time:             |                   | 10:00 8/                                  | 8/19                          |                                    |                  |                   |  |
| Parameter                  |                   | · A                                       | cidity                        | Conductivity                       | Dissolved        | Dissolved Oxygen  |  |
| Units ·                    |                   | pН                                        | pH                            | μS/cm                              | ppm              | ppm               |  |
| Calibration Standard C     |                   | 4.0                                       | 7.0                           | 2707                               | 200              |                   |  |
| Bump Test Reading:         |                   | 3.93                                      | 7.09                          | 2693                               | 0.03             |                   |  |
| Bump Test Temperatu        | ire:              | 24.8                                      | 24.4                          | 24.0/                              | 24.7             |                   |  |
| COMMENTS                   |                   |                                           |                               |                                    |                  |                   |  |
|                            |                   |                                           | atteries or technical support |                                    |                  |                   |  |
| Approval and Distrib       |                   | n inspected and calibrate                 | ed daily and bump tested      | as required by fieldwork s         | taff.            |                   |  |
|                            | Fieldwork Ct      | off Cianatura                             |                               |                                    | 5.1              |                   |  |
| Di-t-il- di D. i . i       | Fieldwork Sta     | an signature                              |                               |                                    | Date             |                   |  |

Q4AN(EV)-410-FM1 FQM - Water Quality Meter Calibration Record (Q4AN(EV)-410-FM1) Revision 1 May 2, 2016

# Appendix F

Surveying Report

Our Ref: 400571 Surveyed - Veris Date of Survey 6/8/19

Site Address: 83 tenth Avenue Home Hill

**Origin of Coordinates** 

Projection MGA Zone 55
Coordinate Datum GDA94
Height Datum AHD



**Coordinate Origin** PM 143379 E 542 347.470m, N 7 826 338.449m, Z 12.128m

| Point ID                   | Easting (m) | Northing(m) | Elevation (m) |
|----------------------------|-------------|-------------|---------------|
| MW01 Natural Surface Level | 543616.862  | 7825995.313 | 12.523        |
| MW01 CASING                | 543616.680  | 7825995.215 | 12.471        |
| MW02 CASING                | 543635.536  | 7826003.024 | 12.114        |
| MW02 Natural Surface Level | 543635.738  | 7826003.076 | 12.195        |
| MW03 CASING                | 543653.240  | 7826005.662 | 12.086        |
| MW03 Natural Surface Level | 543652.994  | 7826005.545 | 12.176        |
| MW04 Natural Surface Level | 543639.524  | 7825992.950 | 12.400        |
| MW04 CASING                | 543639.395  | 7825992.910 | 12.325        |

# Appendix G

Analytical Data Validation



## Appendix G - Analytical Data Validation

## **G1.0 Introduction**

The amended NEPM, Schedule B [2]) Guideline on Site Characterisation (2013) specifies that the nature and quality of the data produced in an investigation should be determined by the data quality objectives (DQOs). As referenced by the NEPM, the DQO process is detailed in the United States Environmental Protection Agency (US EPA) *Guidance on Systematic Planning Using the Data Quality Objectives Process (EPA QA/G-4 : EPA/240/B-06/001), February 2006.* 

The US EPA defines the process as 'a strategic planning approach based on the Scientific Method that is used to prepare for a data collection activity. It provides a systematic procedure for defining the criteria that a data collection design should satisfy, including when to collect samples, where to collect samples, the tolerable level of decision errors for the study, and how many samples to collect'.

The process of establishing appropriate DQOs is defined by the US EPA (2006) according to the following seven steps:

## The seven steps in defining DQOs

| Ste<br>p | Data Quality Objective Step                                                                                                                                                      |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | State the problem – Define the problem that necessitates the study; identify the planning team, examine budget, schedule.                                                        |
| 2        | Identify the goal of the study – State how environmental data will be used in meeting objectives and solving the problem, identify study questions, define alternative outcomes. |
| 3        | Identify information inputs – Identify data & information needed to answer study questions.                                                                                      |
| 4        | <b>Define the boundaries of the study</b> – Specify the target population & characteristics of interest, define spatial & temporal limits, scale of inference.                   |
| 5        | Develop the analytic approach – Define the parameter of interest, specify the type of inference, and develop the logic for drawing conclusions from findings.                    |
| 6        | Specify performance or acceptance criteria – Develop performance criteria for new data being collected or acceptable criteria for existing data being considered for use.        |
| 7        | Develop the plan for obtaining data – Select the resource-effective sampling and analysis plan that meets the performance criteria.                                              |

The approach adopted relative to the seven steps presented above is discussed below.

## G1.1 Step 1 - State the Problem

A report prepared by QFES in November 2016 (QFES, 2016) indicated that PFAS was detected in water held within the Case 4 Pit at the fire station.

The findings of a review of the historical use of firefighting foams containing PFAS at the site have been documented in the PSI report (AECOM, 2019) and it was identified that there was the potential for PFAS to have been released to ground. The extent of the potential presence of PFAS in the different environmental media (soil, groundwater, surface water and sediment) was not known and characterisation of potential source areas, boundary locations and downstream (for surface water) and down-gradient (for groundwater) was required to inform the potential presence of complete source-pathway-receptor linkages at the site.



## G1.2 Identify the Goal of the Study

The overarching purpose of the works is to characterise the potential for PFAS impacts, including concentration and distribution in environmental media (soil, groundwater, surface water and sediment), within and at the boundary of the site.

## **G1.3 Identify Information Inputs**

To allow assessment of the data against the study goal listed in step 2 above, the following inputs have been considered:

- Anecdotal information on historical operations provided from interviews with personnel familiar with the fire stations
- Observations made during the site inspections completed in January and February 2019
- The data review information (site and environmental setting) presented in the PSI report (AECOM, 2019) including:
  - Quantitative site characterisation data including visual observations, laboratory analytical data from field samples (samples of water from the Case 4 pit, comparison of analytical data with screening criteria appropriate for the land use
  - Hydrogeological and hydrological data for each of the six sites including inferred groundwater and surface water flow direction
  - o The potential for preferential pathways e.g. stormwater drains.
- Tier 1 health and ecological investigation and screening levels of each protected beneficial
  use applicable within the boundary of the study area
- Soil, groundwater and sediment analytical results collected between July and August 2019 as presented in this DSI report.

## G1.4 Define the Boundaries of the Study

The lateral extent of the study area defined for decision making is the physical area of the fire station (Lot on Plan boundaries) is outlined in figures in **Appendix A**. The vertical extent of the investigation is the depth to the shallow aquifer system beneath each site. This is considered to be less than 20 mbgl.

The temporal boundary of the study is the current conditions at the time of the fieldwork in July – August 2019.

## G1.5 Develop the Analytical Approach

The decision rules can be defined as:

- If the laboratory quality assurance/quality control data are within the acceptable ranges, the
  data should be considered suitable for use.
- If the PFAS concentrations are reported above the laboratory LOR or risk-based screening levels in one or more samples, then it should be considered whether further assessment is required.

The decision on the acceptance of the analytical data should be made on the basis of the Data Quality Indicators (DQIs) as follows:

- Precision: A quantitative measure of the variability (or reproducibility) of data.
- Accuracy: A quantitative measure of the closeness of reported data to the "true" value.
- Representativeness: The confidence (expressed qualitatively) that data are representative
  of each media present at each fire station.
- Completeness: A measure of the amount of useable data from a data collection activity.
- **Comparability**: The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event.



## **G1.5.1 Precision**

Suitable criteria and/or performance indicators for assessment of precision include:

- Performance of intra-laboratory duplicate sample sets through calculation of relative percentage differences (RPDs).
- Performance of inter-laboratory duplicate sample sets through calculation of RPDs.
- The RPDs should be assessed as acceptable if less than or equal to 30% as per the NEPM Schedule B3. Where the results shows greater than 30% difference a review of the cause should be conducted (NEPC, 2013). It is noted that RPDs that exceed this range may be considered acceptable where:
  - results are less than 10 times the LOR (no limit)
  - results are less than 20 times the LOR and the RPD is less than 50%
  - heterogeneous materials are encountered.

## G1.5.2 Accuracy (Bias)

The closeness of the reported data to the "true" value is assessed through review of performance of:

- Method blanks, which are analysed for the analytes targeted in the primary samples
- Matrix spikes and surrogate recoveries
- Laboratory control samples.

## G1.5.3 Representativeness

To ensure the data produced by the laboratory is representative of conditions encountered in the field, the following steps are taken by the laboratory and subsequently reviewed by the Consultant:

- Blank samples should be run in parallel with field samples to confirm there are no unacceptable instances of laboratory cross contamination.
- Review of RPD values for field and laboratory duplicates to provide an indication that the samples are generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities.
- The appropriateness of collection methodologies, handling, storage and preservation techniques should be assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods).

## **G1.5.4 Completeness**

In validating the degree of completeness of the analytical data sets acquired during the program the following is considered:

- Whether standard operating procedures (SOPs) for sampling protocols have been adhered to.
- Copies of all chain of custody (CoC) documentation are reviewed and presented.

It can therefore be considered whether the proportion of "useable data" generated in the data collection activities is sufficient for the purposes of assessing the problem as stated in Step 1 above.

## G1.5.5 Comparability

Given that assessment data can comprise several data sets from separate sampling episodes, issues of comparability between data sets are reduced through adherence to SOPs and regulator endorsed or made guidelines and standards on each data gathering activity.

In addition, the data should be collected by experienced field staff familiar with PFAS contamination investigations and NATA accredited laboratories should be employed in all laboratory programs for soil, sediment and water analysis.



## **G1.6 Specify Performance or Acceptance Criteria**

Specific limits for this project are in accordance with the appropriate guidance made or endorsed by state and national regulations, appropriate indicators of data quality, and standard procedures for field sampling and handling.

This step also examines the certainty of conclusive statements based on the available new site data collected. This should include the following points to quantify tolerable limits:

- A decision can be made based on a certainty assumption of 95% confidence in any given data set. A limit on the decision error should be 5% that a conclusive statement may be a false positive or false negative.
- A decision error in the context of the decision rule presented above would lead to either underestimation or overestimation of the risk level associated with a particular sampling area.

Sampling errors may occur when the sampling program does not adequately detect the variability of a contaminant from point to point across the site. To address this, the SAQP outlines minimum numbers of samples proposed to be collected from each media.

- As such, there may be limitations in the data if aspects of the SAQP cannot be implemented. Some examples of this scenario include but are not limited to:
  - Proposed surface water sample locations may be dry at the time of sampling; and
  - Proposed samples are not collected due to access being restricted to a given location.
- Limitations in ability to acquire useful and representative information from the data collected. The data are proposed to be collected from multiple locations and sample media. Some examples of this scenario include:
  - Measurement errors can occur during sample collection, handling, preparation, analysis and data reduction. To address this the following measures are proposed:
    - Collection of sufficient sample mass to facilitate analysis reported to standard laboratory detections limits. Collection of insufficient sample mass may result in raised detection limits.
    - Field staff to follow a standard procedure when collecting samples, including decontamination of tools, removal of adhered soil to avoid false positives in results, and use of appropriate sample containers and preservation methods.
    - Laboratories to follow a standard procedure when preparing samples for analysis and undertaking analysis.
- Laboratories to report quality assurance/ quality control data for comparison with the DQIs
  established for the project.

## G1.7 Optimise the Design for Obtaining Data

The methodology is designed to meet the objectives described in **Section 1.3** of the main body of the report and to achieve the nominated DQOs. Optimisation of the data collection process should be achieved by:

- Working closely with the analytical laboratories and sampling equipment suppliers to ensure
  that appropriate procedures and processes are developed and implemented prior to and
  during the fieldwork, to ensure that sample handling, and transport to and processing by the
  analytical laboratories is as smooth as possible; and
- Conducting sampling according to the environmental consultant's SOPs for the type of sampling being conducted.

The scope of works should be carried out to a level of accuracy and confidence presented in the NEPM (NEPC, 2013).



## G2.0 Assessment of Data Quality

The quality of the data collected as part of the investigations was assessed on a range of factors including:

- Documentation and data completeness
- Data quality comparability, representativeness, and precision and accuracy for sampling. Assessment criteria for data quality indicators for samples are listed below in the table below.

## Acceptance Criteria for Data Quality Indicators in Laboratory Analysis

| Data Quality Indicator                    | Acceptance Criteria                                                                                                                                                                                     |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rinsate Blanks                            | Less than the laboratory LOR                                                                                                                                                                            |
| Intra laboratory field duplicates (1) (3) | RPD less than ± 30-50% (where results > 10 x LOR) (2)                                                                                                                                                   |
| Laboratory Duplicates (1) (2) (3)         | RPDs in conformance with criteria in the laboratory QC report.                                                                                                                                          |
| Matrix Spikes (3) (4)                     | Recoveries between 70-130% of the theoretical recovery or as nominated in the laboratory's QC report                                                                                                    |
| Method Blanks                             | Less than the laboratory LOR                                                                                                                                                                            |
| Laboratory Control Samples (5)            | Recoveries between laboratory-specified range for each particular analyte / analytical suite.                                                                                                           |
| Surrogate Spikes                          | Recoveries for surrogates are test dependent and are based on USEPA Method SW846. Control limits are dynamic and vary for individual tests but are within the criteria described in USEPA Method SW846. |

## Notes:

- Potential exceptions to this criterion may occur where sample variation or heterogeneity, rather than poor laboratory performance, is accountable for the poor reproducibility, or where the results are close to the LOR. This typical RPD range is obtained from AS 4482.1-2005 Guide to the investigation and sampling of sites with potentially contaminated soil.
- 2. If the results are close to the LOR, then higher results will be accepted.
- Criteria for sample duplicate and matrix spike results assume no sample heterogeneity. If samples are found to be heterogeneous with respect to a particular analyte the above criteria does not apply.
- 4. Assumes that samples are homogeneous and the background analyte level is less than 20% of the spike level (refer to USEPA Method 8000B). Note that there is no requirement for matrix spikes to pass as certain matrices may preclude recovery of spiked compounds. In this case, data will be accepted if LCS data meets the acceptance criteria.
  - 5.80% of the compounds tested must fall within the control limits. Control limits are dynamic and vary for individual tests as per USEPA
- 5. Decision errors may include collecting samples that are not representative of the contamination status of the material and/or analytical errors.

## G3.0 Field QA/QC Data Assessment

## G3.1 General

All work completed as part of the project was conducted in accordance with standard AECOM environmental sampling protocols. The essential elements of the QA/QC program are presented in the table below.



## Essential Elements of the Field QA/QC Program

| Action                             | Description                                                                                                                                                                                                                  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use of<br>Experienced<br>Personnel | Fieldwork was undertaken by trained AECOM engineers/scientists with previous experience in contaminated site assessment, field sampling techniques and health and safety issues.                                             |
| Record Keeping                     | Full records of all field activities including sample collection and photo log are maintained on standard field activity sheets.                                                                                             |
| Sample<br>Collection               | New nitrile gloves were worn during soil, groundwater and sediment sampling, and were replaced between each sample collection.                                                                                               |
| Sample Labelling                   | A unique sample number was used for each sample to specify the sample origin (soil bore/monitoring well number and date), preservation standards and analytical requirements.                                                |
| Chain of Custody                   | Chain of Custody procedures are required for all sample transfers. Custody sheets list sample numbers; date of collection and analyses required and are signed by each individual transferring and accepting custody.        |
| Sample Storage                     | The collected samples were transferred to laboratory supplied sampling containers with appropriate preservation as required and then placed in cool storage prior to transfer to NATA accredited laboratories (ALS and NMI). |
| Decontamination                    | All non-dedicated field equipment used in the sampling process was decontaminated using de-ionised water prior to mobilisation and between sampling locations to reduce the risks of cross contamination.                    |

In addition to the primary samples, quality control field duplicate samples were collected to assess aspects of field protocols and laboratory performance and to classify the validity of the laboratory data. Field duplicates were collected in general accordance with AS 4482.1-2005 *Guide to the investigation and sampling of sites with potentially contaminated soil* (Standards Australia 2005).

## G3.2 Handling and Sample Preservation

The laboratories reported that all samples were received in appropriately pre-treated and preserved containers. Samples were received preserved and chilled at the laboratory. The sample temperature readings recorded on the Sample Receipt Notification (SRN) ranged from 1.2°C to 6.1°C with ice present.

## G3.3 Frequency of Field Quality Control Samples

Field duplicate samples (intra-laboratory duplicates) and field triplicate samples (inter-laboratory duplicates) were collected and labelled so that they could not be linked to their respective primary samples.

Field duplicate and triplicate samples were collected as 1 duplicate and triplicate sample per 10 primary samples (10%) prepared in the field by equally splitting the primary field samples. A summary of the actual duplicate and triplicate analysis frequency undertaken during this investigation is presented in the table below. The table shows that a sufficient number of field QC samples were collected.

## **Summary of Duplicate and Triplicate Samples**

| Media            | No of<br>Primary<br>Samples | No of<br>Duplicate<br>Samples | % Duplicate Samples | No of<br>Triplicate<br>Samples | %<br>Triplicate<br>Samples |
|------------------|-----------------------------|-------------------------------|---------------------|--------------------------------|----------------------------|
| Soil samples     | 18                          | 2                             | 11%                 | 2                              | 11%                        |
| Water samples    | 4                           | 1                             | 25%                 | 1                              | 25%                        |
| Sediment samples | 2                           | 1                             | 50%                 | 1                              | 50%                        |



## Relative Percentage Difference (RPD) Calculations

A RPD analysis of primary and duplicate/triplicate samples is used to measure the representativeness and/or precision of duplicate samples. The RPD is calculated from the absolute difference between results of the duplicate pair divided by the mean value of the duplicate pair.

RPD (%) =  $100 \times (D1-D2) / ((D1+D2) / 2)$ 

Where: D1 = primary sample analysis, D2 = duplicate sample analysis

AS 4482.1-2005 states that the typical RPD which can be expected from acceptable field duplicates is  $< \pm 30$ - 50% of the mean concentration of the analyte, where the results are greater than ten times the limit of reporting (LOR).

The acceptable ranges adopted are:

- 81% for laboratory duplicates between 0-10 x LOR.
- 50% for laboratory duplicates between 10-30 x LOR.
- 30% for laboratory duplicates greater than 30 x LOR.
- All other RPD calculations were either not calculable, due to the primary or duplicate sample reporting concentrations of COPC less than the LOR or within the expected range of 0- 30% for all other analytes reported.

## Evaluation of the Soil Dataset

An evaluation of the soil dataset is presented in **Table G1**. There was one RPD non-conformance identified. This was for sample HH\_QC100\_190724, which was a duplicate (intralaboratory duplicate) of HH\_BH01\_0.1\_190724 with the RPD for PFOS (50%) exceeding the adopted limit (30%). The duplicate sample had a lower PFOS concentration compared to the primary sample. The concentration of PFOS in the triplicate sample was similar to the primary sample (RPD was 15%). The reason for the difference is considered to be heterogeneity in the soil. As the higher concentrations detected in the primary sample have been used in the assessment, the RPD non-conformance is not considered to impact report interpretation.

## **Evaluation of the Sediment Dataset**

An evaluation of the soil dataset is presented in **Table G2**. No RPD non-conformances were identified in the dataset.

## **Evaluation of the Groundwater Dataset**

An evaluation of the groundwater dataset is presented in **Table G3**. There was one RPD non-conformances identified in the dataset. This was for the primary-triplicate sample set for HH\_MW02 (HH\_QC206\_190806) with 6:2 FTS detected at a concentration of 1.5  $\mu$ g/L in the triplicate sample, while this compound was reported at a concentration of <0.01  $\mu$ g/L in the primary sample (and also the duplicate sample), resulting in a RPD of 197%. This result is anomalous and the reason for the large detection in the triplicate sample (relative to the other results) is not known. The use of different laboratory methods may be a factor in the discrepancy between primary and secondary laboratories. This compound was not detected in any of the other samples. There are no guideline screening levels for 6:2 FTS so the detection of this compound does not impact the risk assessment aspects of the report.

## G3.4 Rinsate Blank Samples

To assess the effectiveness of sampling procedures, four rinsate blank samples were collected on days when sampling equipment was used. Rinsate blanks were collected from sampling equipment which was decontaminated and re-used by passing laboratory supplied deionised water over the sampling equipment following decontamination procedures. The rinsate samples were analysed for PFAS.

The analytical results for PFAS compounds recorded for the rinsate blank samples are presented in **Table G4**. All results for the rinsate samples were below the LOR indicating decontamination procedures were adequate. The data are deemed acceptable for interpretative use and not considered to impact on data interpretation for this investigation.



## G4.0 Laboratory QA/QC

The analytical data was received from the laboratories as the following laboratory batches:

ALS - EB1919840, EB1921176, EB1921187, EB1922105.

NMI - RN1242618, RN1244319.

## **G4.1** Extraction and Analysis Holding Time

All samples were received and analysed within the specified holding times with the exception of moisture content within HH\_SS1\_0.5 (TOPA) (EB1921187) however it is noted that moisture content was analysed within the holding time for the standard analysis and that this exceedance was due to the rebatching of this sample for TOPA analysis.

## G4.2 Laboratory QA/QC

The laboratories used in the investigation (ALS for primary and duplicate samples and NMI for triplicate samples) are NATA accredited for the analyses performed. Quality assurance procedures adopted by both primary and secondary analytical laboratories included analysis of blanks, duplicates, laboratory control samples, matrix spikes and surrogate spikes.

For this investigation, 32 primary and field quality control samples were analysed across six laboratory batches. The additional two laboratory batches identified in **Section G4.0** (EB1921187 and EB1922105) contained samples rebatched for TOPA analysis.

## G4.2.1 Laboratory/Method Blanks

The quality control term Method/Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC type is to monitor potential laboratory contamination.

All the laboratory blanks were within the DQO limits for this investigation. Method blank concentrations were not detected above the LOR for any of the analytes.

## G4.2.2 Laboratory Control Sample (LCS)

The quality control term Laboratory Control Sample (LCS) refers to a known, interference free matrix spiked with target analytes or certified reference material. The purpose of this QC type is to monitor method precision and accuracy independent of sample matrix. Accepted frequency of LCS samples is 1 in 20.

LCS recovery non-conformances were reported for one of the six laboratory reports, EB1921176. The non-conformances were for EtFOSA, MEFOSE, EtFOSA, 6:2 FTS and 10:2 FTS where recovery was less than the lower data quality objective.

As advised by ALS a batch is accepted if at least 80% of the analytes return conforming LCS recoveries. As this criteria has been met for these two batches and as the analytes that reported non-conformances are not key analytes, these non-conformances are not considered to affect the data analysis and interpretation for this investigation. It is additionally noted that none of these analytes were detected in the primary sample so there is no impact on the data interpretation.

## **G4.2.3 Laboratory Duplicates**

The quality control term laboratory duplicate refers to an intra-laboratory split sample randomly selected from the sample batch. Laboratory duplicates provide information on method precision and sample heterogeneity. RPDs are used to assess precision. Frequency of laboratory duplicate samples 1 in 10.

All the laboratory duplicates were within the DQO limits for this investigation.

## G4.2.4 Matrix Spikes

The quality control term Matrix Spike (MS) refers to an intra-laboratory split sample spiked with a representative set of target analytes. The purpose of this QC type is to monitor potential matrix effects on analyte recoveries. The samples undergo the same extraction and analysis



procedures and the results are used to assess the method precision and bias. Spike recoveries are reported as a percent recovery. Frequency of MS samples is 1 in 20.

A summary of batches with MS recovery non-conformances are presented in the table below.

## Summary of Matrix Spike Recovery non-conformances

| Analyte                                                                                                                                | Batches                            | Comments                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------|
| PFOS                                                                                                                                   | EB1919839-050<br>(Anonymous)       | MS recovery not determined due to the higher background level greater than or equal to 4x spike level. |
| PFOS                                                                                                                                   | EB1919840-060<br>(HH_QC100_190724) | MS recovery not determined due to the higher background level greater than or equal to 4x spike level. |
| PFTeDA, MeFOSE                                                                                                                         | EB1919840-060<br>(HH_QC100_190724) | Recovery was less than the lower data quality objective.                                               |
| PFOS, PFBA,<br>PFNA, PFDA,<br>PFUnDA, PFDoDA,<br>PFTrDA, PFTeDA,<br>MeFOSA, EtFOSA,<br>MeFOSE, EtFOSE<br>EtFOSAA, 6:2 FTS,<br>10:2 FTS | EB1921176-006<br>(HH_SED02_190806) | Recovery was less than the lower data quality objective.                                               |
| PFOS                                                                                                                                   | EB1921176-002<br>(HH_MW02_190806)  | MS recovery not determined due to the higher background level greater than or equal to 4x spike level. |
| PFUnDA, 6:2 FTS,<br>10:2 FTS                                                                                                           | EB1921138-003<br>(Anonymous)       | Recovery was greater than the lower data quality objective.                                            |
| EtFOSAA                                                                                                                                | EB1921138-003<br>(Anonymous)       | Recovery was less than the lower data quality objective.                                               |

The data demonstrate that matrix interference has occurred in some of the samples, in particular, the sediment sample HH\_SED02 where matrix spikes non-conformances are recorded for 15 analytes, which may indicate suppressed recovery of these analytes in the sample.

The recovery of matrix spikes above and below the data quality objectives are considered to be due to heterogeneity of the samples. The non-determining of the MS recovery is potentially due to the matrix of the particular sample rather than the spike recovery. Overall the data are not considered to affect the quality of the data for interpretative use.

## **G4.2.5 Surrogate Spikes**

The quality control term surrogate spike (SS) refers to a compound added to a sample aliquot in known amounts before extraction and analysis. The compound should be similar in composition and behaviour to the target analyte but not naturally occurring in the sample. A surrogate is used to monitor the method performance for analysis of organic compounds. Spike recoveries are reported as a percent recovery.

A summary of batches with surrogate spike recovery non-conformances are presented in the table below.



## Summary of Surrogate Spike Recovery non-conformances

| Analyte       | Batches                        | Comments                                         |
|---------------|--------------------------------|--------------------------------------------------|
| 13C4-<br>PFOS | EB1921176 - soil<br>(HH_QC107) | Recovery less than lower data quality objective. |

Surrogate spike recovery non-conformance is potentially due to the matrix of the particular samples rather than the surrogate recovery and as such does not affect the quality of the data for interpretative use.

## G4.2.6 Frequency of Laboratory QC samples

The laboratory reported a sufficient frequency of quality control samples to assess whether the results have been reported to an acceptable accuracy and precision for all the batches. No non-conformances were identified for any of the QC samples.

## **G5.0** Conclusions

While non-conformances with the laboratory QA/QC have been identified, these non-conformances are not considered to adversely impact the purpose of the investigation with respect to comparison against the adopted assessment criteria. It is concluded that, for the purposes of this investigation, the data are suitable for interpretation and acceptable for use in this assessment.



|          | 1     | Lab Report Number         | EB1919840          | EB1919840       | 1   | EB1919840          | RN1242618       |     | EB1919840         | EB1919840       |     | EB1919840         | RN1242618       | $\neg$ |
|----------|-------|---------------------------|--------------------|-----------------|-----|--------------------|-----------------|-----|-------------------|-----------------|-----|-------------------|-----------------|--------|
|          |       | Field ID                  | HH BH01 0.1 190724 | HH QC100 190724 | RPD | HH BH01 0.1 190724 | HH-QC200-190724 | RPD | HH SS1 0.5 190724 | HH QC101 190724 | RPD | HH SS1 0.5 190724 | HH-QC201-190724 | RPD    |
|          |       | Sampled Date              | 24/07/2019         | 24/07/2019      |     | 24/07/2019         | 24/07/2019      |     | 24/07/2019        | 24/07/2019      |     | 24/07/2019        | 24/07/2019      |        |
|          |       |                           |                    |                 |     |                    |                 |     |                   |                 |     |                   |                 |        |
| Compound | Units | LOR                       |                    |                 |     |                    |                 |     |                   |                 |     |                   |                 |        |
| PFBS     | mg/kg | 0.0002 : 0.001 (Interlab) | <0.0002            | < 0.0002        | 0   | < 0.0002           | <0.001          | 0   | < 0.0002          | < 0.0002        | 0   | < 0.0002          | <0.001          | 0      |
| PFPeS    | mg/kg | 0.0002 : 0.001 (Interlab) | < 0.0002           | < 0.0002        | 0   | < 0.0002           | <0.001          | 0   | < 0.0002          | < 0.0002        | 0   | < 0.0002          | <0.001          | 0      |
| PFHxS    | mg/kg | 0.0002 : 0.001 (Interlab) | 0.0003             | < 0.0002        | 40  | 0.0003             | <0.001          | 0   | 0.0004            | 0.0003          | 29  | 0.0004            | <0.001          | 0      |
| PFHpS    | mg/kg | 0.0002 : 0.001 (Interlab) | < 0.0002           | < 0.0002        | 0   | < 0.0002           | <0.001          | 0   | < 0.0002          | < 0.0002        | 0   | < 0.0002          | <0.001          | 0      |
| PFOS     | mg/kg | 0.0002 : 0.002 (Interlab) | 0.0112             | 0.0067          | 50  | 0.0112             | 0.013           | 15  | 0.223             | 0.186           | 18  | 0.223             | 0.22            | 1      |
|          | mg/kg | 0.0002                    | < 0.0002           | <0.0002         | 0   | < 0.0002           | <0.001          | 0   | < 0.0002          | <0.0002         | 0   | < 0.0002          | <0.001          | 0      |
| PFBA     | mg/kg | 0.001                     | <0.001             | <0.001          | 0   | < 0.001            | < 0.002         | 0   | <0.001            | <0.001          | 0   | <0.001            | < 0.002         | 0      |
| PFPeA    | mg/kg | 0.0002 : 0.002 (Interlab) | < 0.0002           | < 0.0002        | 0   | < 0.0002           | < 0.002         | 0   | 0.0005            | 0.0004          | 22  | 0.0005            | < 0.002         | 0      |
| PFHxA    | mg/kg | 0.0002 : 0.001 (Interlab) | < 0.0002           | <0.0002         | 0   | < 0.0002           | <0.001          | 0   | 0.0004            | 0.0003          | 29  | 0.0004            | <0.001          | 0      |
| PFHpA    | mg/kg | 0.0002 : 0.001 (Interlab) | < 0.0002           | <0.0002         | 0   | < 0.0002           | <0.001          | 0   | 0.0004            | 0.0003          | 29  | 0.0004            | <0.001          | 0      |
| PFOA     | mg/kg | 0.0002 : 0.001 (Interlab) | <0.0002            | < 0.0002        | 0   | < 0.0002           | <0.001          | 0   | 0.0002            | <0.0002         | 0   | 0.0002            | <0.001          | 0      |
| PFNA     | mg/kg | 0.0002 : 0.001 (Interlab) | <0.0002            | < 0.0002        | 0   | < 0.0002           | <0.001          | 0   | 0.0016            | 0.0016          | 0   | 0.0016            | 0.0022          | 32     |
| PFDA     | mg/kg | 0.0002 : 0.001 (Interlab) | 0.0003             | < 0.0002        | 40  | 0.0003             | <0.001          | 0   | 0.0005            | 0.0004          | 22  | 0.0005            | <0.001          | 0      |
| PFUnDA   | mg/kg | 0.0002 : 0.002 (Interlab) | 0.0003             | 0.0002          | 40  | 0.0003             | < 0.002         | 0   | < 0.0002          | < 0.0002        | 0   | < 0.0002          | < 0.002         | 0      |
| PFDoDA   | mg/kg | 0.0002 : 0.002 (Interlab) | < 0.0002           | <0.0002         | 0   | < 0.0002           | < 0.002         | 0   | < 0.0002          | < 0.0002        | 0   | < 0.0002          | < 0.002         | 0      |
| PFTrDA   | mg/kg | 0.0002 : 0.002 (Interlab) | < 0.0002           | <0.0002         | 0   | < 0.0002           | < 0.002         | 0   | < 0.0002          | < 0.0002        | 0   | < 0.0002          | < 0.002         | 0      |
| PFTeDA   | mg/kg | 0.0005 : 0.002 (Interlab) | < 0.0005           | < 0.0005        | 0   | < 0.0005           | < 0.002         | 0   | < 0.0005          | < 0.0005        | 0   | < 0.0005          | < 0.002         | 0      |
| 4:2 FTS  | mg/kg | 0.0005 : 0.001 (Interlab) | <0.0005            | < 0.0005        | 0   | < 0.0005           | <0.001          | 0   | < 0.0005          | < 0.0005        | 0   | < 0.0005          | <0.001          | 0      |
| 6:2 FTS  | mg/kg | 0.0005 : 0.001 (Interlab) | <0.0005            | < 0.0005        | 0   | < 0.0005           | <0.001          | 0   | < 0.0005          | < 0.0005        | 0   | < 0.0005          | <0.001          | 0      |
| 8:2 FTS  | mg/kg | 0.0005 : 0.001 (Interlab) | < 0.0005           | < 0.0005        | 0   | < 0.0005           | <0.001          | 0   | < 0.0005          | < 0.0005        | 0   | < 0.0005          | <0.001          | 0      |
| 10:2 FTS | mg/kg | 0.0005 : 0.002 (Interlab) | < 0.0005           | < 0.0005        | 0   | < 0.0005           | < 0.002         | 0   | < 0.0005          | < 0.0005        | 0   | < 0.0005          | < 0.002         | 0      |
| MeFOSAA  | mg/kg | 0.0002 : 0.002 (Interlab) | < 0.0002           | < 0.0002        | 0   | < 0.0002           | < 0.002         | 0   | < 0.0002          | < 0.0002        | 0   | < 0.0002          | < 0.002         | 0      |
| EtFOSAA  | mg/kg | 0.0002 : 0.002 (Interlab) | < 0.0002           | < 0.0002        | 0   | < 0.0002           | < 0.002         | 0   | < 0.0002          | < 0.0002        | 0   | < 0.0002          | < 0.002         | 0      |
| FOSA     | mg/kg | 0.0002 : 0.001 (Interlab) | <0.0002            | <0.0002         | 0   | <0.0002            | <0.001          | 0   | <0.0002           | <0.0002         | 0   | < 0.0002          | <0.001          | 0      |
| EtFOSA   | mg/kg | 0.0005 : 0.002 (Interlab) | < 0.0005           | < 0.0005        | 0   | < 0.0005           | < 0.002         | 0   | < 0.0005          | < 0.0005        | 0   | < 0.0005          | < 0.002         | 0      |
| MeFOSA   | mg/kg | 0.0005 : 0.002 (Interlab) | < 0.0005           | < 0.0005        | 0   | < 0.0005           | < 0.002         | 0   | < 0.0005          | < 0.0005        | 0   | < 0.0005          | < 0.002         | 0      |
| EtFOSE   | mg/kg | 0.0005 : 0.005 (Interlab) | < 0.0005           | < 0.0005        | 0   | < 0.0005           | < 0.005         | 0   | < 0.0005          | < 0.0005        | 0   | < 0.0005          | < 0.005         | 0      |
| MeFOSE   | mg/kg | 0.0005 : 0.005 (Interlab) | < 0.0005           | <0.0005         | 0   | <0.0005            | < 0.005         | 0   | < 0.0005          | <0.0005         | 0   | < 0.0005          | < 0.005         | 0      |

<sup>\*</sup>RPDs have only been considered where a concentration is greater than 1 times the EQL.

<sup>\*\*</sup>High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 81 (1-10 x EQL); 50 (10-30 x EQL); 30 (> 30 x EQL) )
\*\*\*Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory



|          |       | Lab Report Number         | EB1921176       | EB1921176       |     | EB1921176       | RN1244319       |     |
|----------|-------|---------------------------|-----------------|-----------------|-----|-----------------|-----------------|-----|
|          |       | Field ID                  | HH_SED01_190806 | HH_QC107_190806 | RPD | HH_SED01_190806 | HH_QC207_190806 | RPD |
|          |       | Sampled Date              | 6/08/2019       | 6/08/2019       |     | 6/08/2019       | 6/08/2019       |     |
|          |       |                           |                 |                 |     |                 |                 |     |
| Compound | Units | LOR                       |                 |                 |     |                 |                 |     |
| PFBS     | mg/kg | 0.0002 : 0.001 (Interlab) | <0.0002         | < 0.0002        | 0   | < 0.0002        | <0.001          | 0   |
| PFPeS    | mg/kg | 0.0002 : 0.001 (Interlab) | < 0.0002        | <0.0002         | 0   | < 0.0002        | <0.001          | 0   |
| PFHxS    | mg/kg | 0.0002 : 0.001 (Interlab) | <0.0002         | < 0.0002        | 0   | < 0.0002        | <0.001          | 0   |
| PFHpS    | mg/kg | 0.0002 : 0.001 (Interlab) | <0.0002         | < 0.0002        | 0   | < 0.0002        | <0.001          | 0   |
| PFOS     | mg/kg | 0.0002 : 0.002 (Interlab) | 0.0021          | 0.0014          | 40  | 0.0021          | 0.0026          | 21  |
| PFDS     | mg/kg | 0.0002                    | <0.0002         | <0.0002         | 0   | < 0.0002        | <0.001          | 0   |
| PFBA     | mg/kg | 0.001                     | <0.001          | <0.001          | 0   | <0.001          | <0.002          | 0   |
| PFPeA    | mg/kg | 0.0002 : 0.002 (Interlab) | <0.0002         | < 0.0002        | 0   | < 0.0002        | <0.002          | 0   |
| PFHxA    | mg/kg | 0.0002 : 0.001 (Interlab) | <0.0002         | < 0.0002        | 0   | < 0.0002        | <0.001          | 0   |
| PFHpA    | mg/kg | 0.0002 : 0.001 (Interlab) | <0.0002         | <0.0002         | 0   | < 0.0002        | <0.001          | 0   |
| PFOA     | mg/kg | 0.0002 : 0.001 (Interlab) | <0.0002         | < 0.0002        | 0   | < 0.0002        | <0.001          | 0   |
| PFNA     | mg/kg | 0.0002 : 0.001 (Interlab) | <0.0002         | < 0.0002        | 0   | < 0.0002        | <0.001          | 0   |
| PFDA     | mg/kg | 0.0002 : 0.001 (Interlab) | <0.0002         | <0.0002         | 0   | < 0.0002        | <0.001          | 0   |
| PFUnDA   | mg/kg | 0.0002 : 0.002 (Interlab) | <0.0002         | <0.0002         | 0   | < 0.0002        | <0.002          | 0   |
| PFDoDA   | mg/kg | 0.0002 : 0.002 (Interlab) | <0.0002         | < 0.0002        | 0   | < 0.0002        | <0.002          | 0   |
| PFTrDA   | mg/kg | 0.0002 : 0.002 (Interlab) | <0.0002         | < 0.0002        | 0   | < 0.0002        | <0.002          | 0   |
| PFTeDA   | mg/kg | 0.0005 : 0.002 (Interlab) | <0.0005         | < 0.0005        | 0   | < 0.0005        | <0.002          | 0   |
| 4:2 FTS  | mg/kg | 0.0005 : 0.001 (Interlab) | <0.0005         | < 0.0005        | 0   | < 0.0005        | <0.001          | 0   |
| 6:2 FTS  | mg/kg | 0.0005 : 0.001 (Interlab) | <0.0005         | < 0.0005        | 0   | < 0.0005        | <0.001          | 0   |
| 8:2 FTS  | mg/kg | 0.0005 : 0.001 (Interlab) | <0.0005         | < 0.0005        | 0   | < 0.0005        | <0.001          | 0   |
| 10:2 FTS | mg/kg | 0.0005 : 0.002 (Interlab) | <0.0005         | < 0.0005        | 0   | < 0.0005        | <0.002          | 0   |
| MeFOSAA  | mg/kg | 0.0002 : 0.002 (Interlab) | <0.0002         | < 0.0002        | 0   | < 0.0002        | <0.002          | 0   |
| EtFOSAA  | mg/kg | 0.0002 : 0.002 (Interlab) | <0.0002         | < 0.0002        | 0   | < 0.0002        | <0.002          | 0   |
| FOSA     | mg/kg | 0.0002 : 0.001 (Interlab) | < 0.0002        | <0.0002         | 0   | <0.0002         | <0.001          | 0   |
| EtFOSA   | mg/kg | 0.0005 : 0.002 (Interlab) | < 0.0005        | < 0.0005        | 0   | < 0.0005        | <0.002          | 0   |
| MeFOSA   | mg/kg | 0.0005 : 0.002 (Interlab) | < 0.0005        | <0.0005         | 0   | <0.0005         | <0.002          | 0   |
| EtFOSE   | mg/kg | 0.0005 : 0.005 (Interlab) | < 0.0005        | <0.0005         | 0   | <0.0005         | < 0.005         | 0   |
| MeFOSE   | mg/kg | 0.0005 : 0.005 (Interlab) | <0.0005         | <0.0005         | 0   | <0.0005         | < 0.005         | 0   |

<sup>\*</sup>RPDs have only been considered where a concentration is greater than 1 times the EQL.

<sup>\*\*</sup>High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 81 (1-10 x EQL); 50 (10-30 x EQL); 30 ( > 30 x EQL) )

<sup>\*\*\*</sup>Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory



|          |       | Lab Report Number<br>Field ID | EB1921176<br>HH_MW02_190806 | EB1921176<br>HH_QC106_190806 | RPD | EB1921176<br>HH_MW02_190806 | RN1244319<br>HH_QC206_190806 | RPD |
|----------|-------|-------------------------------|-----------------------------|------------------------------|-----|-----------------------------|------------------------------|-----|
|          |       | Sampled Date                  | 6/08/2019                   | 6/08/2019                    |     | 6/08/2019                   | 6/08/2019                    |     |
| Compound | Units | LOR                           |                             |                              |     |                             | 1                            |     |
| PFBS     |       | 0.0002 : 0.001 (Interlab)     | 0.049                       | 0.047                        | 4   | 0.049                       | 0.041                        | 10  |
|          |       | ` '                           | ****                        | ****                         | 0   | ****                        | *** * *                      | 18  |
| PFPeS    |       | 0.0002 : 0.001 (Interlab)     | 0.024                       | 0.024                        | 8   | 0.024                       | 0.024                        | 11  |
| PFHxS    |       | 0.0002 : 0.001 (Interlab)     | 0.161                       | 0.149                        |     | 0.161                       | 0.18                         |     |
| PFHpS    |       | 0.0002 : 0.001 (Interlab)     | <0.01                       | <0.01                        | 0   | <0.01                       | 0.0062                       | 0   |
| PFOS     |       | 0.0002 : 0.002 (Interlab)     | 3.25                        | 3.29                         | 1   | 3.25                        | 3.50                         | 7   |
| PFDS     |       | 0.0002                        | <0.01                       | <0.01                        | 0   | <0.01                       | <0.001                       | 0   |
| PFBA     | mg/kg |                               | <0.05                       | <0.05                        | 0   | <0.05                       | 0.0099                       | 0   |
| PFPeA    |       | 0.0002 : 0.002 (Interlab)     | 0.015                       | 0.015                        | 0   | 0.015                       | 0.019                        | 24  |
| PFHxA    |       | 0.0002 : 0.001 (Interlab)     | 0.029                       | 0.029                        | 0   | 0.029                       | 0.032                        | 10  |
| PFHpA    | 3 3   | 0.0002 : 0.001 (Interlab)     | 0.021                       | 0.021                        | 0   | 0.021                       | 0.019                        | 10  |
| PFOA     |       | 0.0002 : 0.001 (Interlab)     | 0.017                       | 0.013                        | 27  | 0.017                       | 0.0075                       | 78  |
| PFNA     | mg/kg | 0.0002 : 0.001 (Interlab)     | <0.01                       | <0.01                        | 0   | <0.01                       | <0.001                       | 0   |
| PFDA     | mg/kg | 0.0002 : 0.001 (Interlab)     | <0.01                       | <0.01                        | 0   | <0.01                       | <0.001                       | 0   |
| PFUnDA   | mg/kg | 0.0002 : 0.002 (Interlab)     | <0.01                       | <0.01                        | 0   | <0.01                       | <0.001                       | 0   |
| PFDoDA   | mg/kg | 0.0002 : 0.002 (Interlab)     | <0.01                       | <0.01                        | 0   | <0.01                       | <0.001                       | 0   |
| PFTrDA   | mg/kg | 0.0002 : 0.002 (Interlab)     | <0.01                       | <0.01                        | 0   | <0.01                       | <0.002                       | 0   |
| PFTeDA   | mg/kg | 0.0005 : 0.002 (Interlab)     | <0.025                      | <0.025                       | 0   | <0.025                      | <0.002                       | 0   |
| 4:2 FTS  | mg/kg | 0.0005 : 0.001 (Interlab)     | <0.01                       | <0.01                        | 0   | <0.01                       | <0.001                       | 0   |
| 6:2 FTS  | mg/kg | 0.0005 : 0.001 (Interlab)     | <0.01                       | <0.01                        | 0   | <0.01                       | 1.50                         | 197 |
| 8:2 FTS  | mg/kg | 0.0005 : 0.001 (Interlab)     | <0.01                       | <0.01                        | 0   | <0.01                       | <0.001                       | 0   |
| 10:2 FTS | mg/kg | 0.0005 : 0.002 (Interlab)     | <0.01                       | <0.01                        | 0   | <0.01                       | <0.001                       | 0   |
| MeFOSAA  | mg/kg | 0.0002 : 0.002 (Interlab)     | <0.01                       | <0.01                        | 0   | <0.01                       | <0.002                       | 0   |
| EtFOSAA  |       | 0.0002 : 0.002 (Interlab)     | <0.01                       | <0.01                        | 0   | <0.01                       | <0.002                       | 0   |
| FOSA     |       | 0.0002 : 0.001 (Interlab)     | <0.01                       | <0.01                        | 0   | <0.01                       | <0.001                       | 0   |
| EtFOSA   |       | 0.0005 : 0.002 (Interlab)     | <0.025                      | <0.025                       | 0   | <0.025                      | <0.002                       | 0   |
| MeFOSA   |       | 0.0005 : 0.002 (Interlab)     | <0.025                      | <0.025                       | 0   | <0.025                      | <0.002                       | 0   |
| EtFOSE   |       | 0.0005 : 0.005 (Interlab)     | <0.025                      | <0.025                       | 0   | <0.025                      | <0.005                       | 0   |
| MeFOSE   | 5     | 0.0005 : 0.005 (Interlab)     | <0.025                      | <0.025                       | 0   | <0.025                      | <0.005                       | 0   |

<sup>\*</sup>RPDs have only been considered where a concentration is greater than 1 times the EQL.

<sup>\*\*</sup>High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 81 (1-10 x EQL); 50 (10-30 x EQL); 30 ( > 30 x EQL) )

<sup>\*\*\*</sup>Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory



|          |       | Lab Report Number        | EB1919840                     | EB1919840                     | EB1919840                     | EB1921176                    |
|----------|-------|--------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------|
|          |       | Field ID<br>Sampled Date | HH_QC300_190724<br>24/07/2019 | HH_QC301_190724<br>24/07/2019 | HH_QC302_190725<br>25/07/2019 | HH_QC303_190806<br>6/08/2019 |
|          |       | Sampled Date             | 24/07/2019                    | 24/01/2019                    | 25/07/2019                    | 0/00/2019                    |
| Compound | Units | LOR                      |                               |                               |                               |                              |
| PFBS     | mg/kg | 0.002                    | < 0.002                       | < 0.002                       | < 0.002                       | < 0.002                      |
| PFPeS    | mg/kg |                          | <0.002                        | <0.002                        | <0.002                        | <0.002                       |
| PFHxS    | mg/kg |                          | < 0.002                       | <0.002                        | <0.002                        | < 0.002                      |
| PFHpS    | mg/kg |                          | < 0.002                       | < 0.002                       | < 0.002                       | < 0.002                      |
| PFOS     | mg/kg | 0.002                    | < 0.002                       | < 0.002                       | < 0.002                       | < 0.002                      |
| PFDS     | mg/kg |                          | < 0.002                       | < 0.002                       | < 0.002                       | < 0.002                      |
| PFBA     | mg/kg | 0.01                     | < 0.01                        | < 0.01                        | < 0.01                        | <0.01                        |
| PFPeA    | mg/kg | 0.002                    | < 0.002                       | < 0.002                       | < 0.002                       | < 0.002                      |
| PFHxA    | mg/kg | 0.002                    | < 0.002                       | < 0.002                       | < 0.002                       | < 0.002                      |
| PFHpA    | mg/kg | 0.002                    | < 0.002                       | < 0.002                       | < 0.002                       | < 0.002                      |
| PFOA     | mg/kg | 0.002                    | < 0.002                       | < 0.002                       | < 0.002                       | < 0.002                      |
| PFNA     | mg/kg | 0.002                    | < 0.002                       | < 0.002                       | < 0.002                       | < 0.002                      |
| PFDA     | mg/kg | 0.002                    | < 0.002                       | < 0.002                       | < 0.002                       | < 0.002                      |
| PFUnDA   | mg/kg | 0.002                    | < 0.002                       | < 0.002                       | < 0.002                       | < 0.002                      |
| PFDoDA   | mg/kg | 0.002                    | < 0.002                       | < 0.002                       | < 0.002                       | < 0.002                      |
| PFTrDA   | mg/kg | 0.002                    | < 0.002                       | < 0.002                       | < 0.002                       | < 0.002                      |
| PFTeDA   | mg/kg | 0.005                    | < 0.005                       | < 0.005                       | < 0.005                       | < 0.005                      |
| 4:2 FTS  | mg/kg | 0.005                    | < 0.005                       | < 0.005                       | < 0.005                       | < 0.005                      |
| 6:2 FTS  | mg/kg | 0.005                    | < 0.005                       | < 0.005                       | < 0.005                       | < 0.005                      |
| 8:2 FTS  | mg/kg | 0.005                    | < 0.005                       | < 0.005                       | < 0.005                       | < 0.005                      |
| 10:2 FTS | mg/kg | 0.005                    | < 0.005                       | < 0.005                       | < 0.005                       | < 0.005                      |
| MeFOSAA  | mg/kg |                          | < 0.002                       | < 0.002                       | < 0.002                       | < 0.002                      |
| EtFOSAA  | mg/kg | 0.002                    | < 0.002                       | < 0.002                       | < 0.002                       | < 0.002                      |
| FOSA     | mg/kg | 0.002                    | < 0.002                       | < 0.002                       | < 0.002                       | < 0.002                      |
| EtFOSA   | mg/kg | 0.005                    | < 0.005                       | < 0.005                       | < 0.005                       | < 0.005                      |
| MeFOSA   | mg/kg | 0.005                    | < 0.005                       | < 0.005                       | < 0.005                       | < 0.005                      |
| EtFOSE   | mg/kg | 0.005                    | < 0.005                       | < 0.005                       | < 0.005                       | < 0.005                      |
| MeFOSE   | mg/kg | 0.005                    | < 0.005                       | <0.005                        | <0.005                        | < 0.005                      |

# Appendix H

Analytical Laboratory Reports





# Environmental Division Brisbane Work Order Reference EB1919840



[elephone: +61-7-3243 7222

# **Custody Document for Submissions via ALS Compass App**

| Project: 606909758 2-0 -2 HH                 | Client: AECOM Pty Ltd      | Project Manager: James Peachey | s Peachey       |
|----------------------------------------------|----------------------------|--------------------------------|-----------------|
|                                              |                            | Phone:                         | ( 0425 206 362  |
| ALS Compass COC Reference: $2b5b$ # Samples: | # Samples:                 | Sampler: Cami                  | Camden McCosker |
|                                              |                            | Phone: (                       | 0499 990 214    |
| Turnaround Requirements: Standard            | 5 Day Urgent               |                                |                 |
| Special Instructions:                        |                            |                                |                 |
| 2 Eskes                                      |                            |                                |                 |
|                                              |                            |                                |                 |
| Pleas report with                            | - [ KMM DU e and at Sample | SCAPIC III                     |                 |
| Custody:                                     |                            |                                |                 |
| Relinquished by:                             | Received by:               | Relinquished by:               | Received by:    |
| (anden                                       | town                       | Kenaky                         | M. 6(12ct       |
| Date / Time:                                 | Date / Time:               | Date / Time:                   | Date / Time:    |
|                                              | SDD 17-18                  | 0091 10-4-18                   | 1/8/19 9.40     |
|                                              |                            |                                |                 |



## SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EB1919840

Amendment : 1

Client : AECOM Australia Pty Ltd Laboratory : Environmental Division Brisbane

Contact : CAMDEN McCOSKER Contact : Carsten Emrich

Address : Address : 2 Byth Street Stafford QLD Australia

4053

 Telephone
 : --- Telephone
 : +61 7 3552 8616

 Facsimile
 : --- Facsimile
 : +61-7-3243 7218

Project : 60609758\_HH Page : 1 of 4

 Order number
 : 60609758 2.0
 Quote number
 : EB2019AECOMAU0002 (BN/112/19)

 C-O-C number
 : 2656
 QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler : CAMDEN McCOSKER

Brisbane

**Dates** 

Date

**Delivery Details** 

Mode of Delivery : Carrier Security Seal : Intact.

No. of coolers/boxes : 2 Temperature : 0.9°C; 4.3°C - Ice present

Receipt Detail : MEDIUM ESKY No. of samples received / analysed : 68 / 23

## General Comments

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- \*01/08/2019\*: SRN has been resent to acknowledge samples have been fowarded to NMI as requested on the Chain of Custody. This will incur a freight fowarding fee. For any further information regarding these adjustments please contact client services at ALSEnviro.Brisbane@alsglobal.com.
- Discounted Package Prices apply only when specific ALS Group Codes ('W', 'S', 'NT' suites) are referenced on COCs.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Analysis will be conducted by ALS Environmental, Brisbane, NATA accreditation no. 825, Site No. 818 (Micro site no. 18958).
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 12-Aug-2019 Issue Date

Page

: 2 of 4 : EB1919840 Amendment 1 Work Order Client : AECOM Australia Pty Ltd



## Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

## Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the

| laboratory and    |                                | ickets without a time | 9                                  |                                      | EP231X (solids)<br>- Full Suite (28 anal)          |
|-------------------|--------------------------------|-----------------------|------------------------------------|--------------------------------------|----------------------------------------------------|
| component         | , ,                            |                       | neste                              | 03<br>1+                             | (solic                                             |
| Matrix: SOIL      |                                |                       | n Hold) SOIL<br>analysis requested | SOIL - EA055-103<br>Moisture Content | SOIL - EP231X (solids)<br>PFAS - Full Suite (28 ar |
|                   | 0" ( "                         | Client commis ID      | On Hold) SOIL                      | - EAC                                | -EP2                                               |
| Laboratory sample | Client sampling<br>date / time | Client sample ID      | On H                               | SOIL                                 | SOIL                                               |
| EB1919840-001     | 24-Jul-2019 14:35              | HH_BH01_0.1_190724    |                                    | √                                    | ✓                                                  |
| EB1919840-002     | 24-Jul-2019 14:35              | HH_BH01_0.5_190724    | ✓                                  |                                      |                                                    |
| EB1919840-003     | 24-Jul-2019 14:36              | HH_BH01_1.0_190724    |                                    | ✓                                    | 1                                                  |
| EB1919840-004     | 24-Jul-2019 14:36              | HH_BH01_1.5_190724    | ✓                                  |                                      |                                                    |
| EB1919840-005     | 24-Jul-2019 15:38              | HH_BH01_2.0_190724    | ✓                                  |                                      |                                                    |
| EB1919840-006     | 24-Jul-2019 15:39              | HH_BH01_3.0_190724    | 1                                  |                                      |                                                    |
| EB1919840-007     | 24-Jul-2019 15:39              | HH_BH01_4.0_190724    | ✓                                  |                                      |                                                    |
| EB1919840-008     | 24-Jul-2019 15:40              | HH_BH01_3.8_190724    | 1                                  |                                      |                                                    |
| EB1919840-009     | 24-Jul-2019 15:40              | HH_BH01_5.0_190724    | ✓                                  |                                      |                                                    |
| EB1919840-010     | 24-Jul-2019 15:43              | HH_BH01_6.0_190724    | ✓                                  |                                      |                                                    |
| EB1919840-011     | 24-Jul-2019 15:46              | HH_BH01_7.0_190724    | ✓                                  |                                      |                                                    |
| EB1919840-012     | 24-Jul-2019 15:46              | HH_BH01_8.0_190724    | ✓                                  |                                      |                                                    |
| EB1919840-013     | 24-Jul-2019 15:47              | HH_BH01_9.0_190724    |                                    | ✓                                    | ✓                                                  |
| EB1919840-014     | 24-Jul-2019 15:47              | HH_BH01_10.0_190724   | ✓                                  |                                      |                                                    |
| EB1919840-015     | 24-Jul-2019 15:48              | HH_SS1_0.1_190724     |                                    | ✓                                    | ✓                                                  |
| EB1919840-016     | 24-Jul-2019 15:50              | HH_SS1_0.5_190724     |                                    | ✓                                    | ✓                                                  |
| EB1919840-017     | 24-Jul-2019 15:50              | HH_SS2_0.1_190724     |                                    | ✓                                    | ✓                                                  |
| EB1919840-018     | 24-Jul-2019 16:00              | HH_SS4_0.1_190724     |                                    | ✓                                    | ✓                                                  |
| EB1919840-019     | 24-Jul-2019 16:11              | HH_SS3_0.1_190724     |                                    | ✓                                    | ✓                                                  |
| EB1919840-020     | 24-Jul-2019 16:12              | HH_SS3_0.5_190724     |                                    | ✓                                    | ✓                                                  |
| EB1919840-021     | 24-Jul-2019 16:42              | HH_BH02_0.1_190724    | ✓                                  |                                      |                                                    |
| EB1919840-022     | 24-Jul-2019 16:44              | HH_BH02_0.5_190724    |                                    | ✓                                    | ✓                                                  |
| EB1919840-023     | 24-Jul-2019 16:44              | HH_BH02_1.0_190724    |                                    | ✓                                    | ✓                                                  |
| EB1919840-024     | 24-Jul-2019 16:45              | HH_BH02_1.5_190724    | ✓                                  |                                      |                                                    |
| EB1919840-025     | 25-Jul-2019 08:40              | HH_BH02_2.0_190725    | ✓                                  |                                      |                                                    |
| EB1919840-026     | 25-Jul-2019 08:41              | HH_BH02_3.0_190725    | ✓                                  |                                      |                                                    |
| EB1919840-027     | 25-Jul-2019 08:41              | HH_BH02_4.0_190725    | ✓                                  |                                      |                                                    |
| EB1919840-028     | 25-Jul-2019 08:42              | HH_BH02_5.0_190725    | ✓                                  |                                      |                                                    |
| EB1919840-029     | 25-Jul-2019 08:42              | HH_BH04_6.0_190725    | ✓                                  |                                      |                                                    |
| EB1919840-030     | 25-Jul-2019 08:43              | HH_BH02_7.0_190725    | ✓                                  |                                      |                                                    |
| EB1919840-031     | 25-Jul-2019 08:53              | HH_BH02_8.0_190725    | ✓                                  |                                      |                                                    |
| EB1919840-032     | 25-Jul-2019 08:54              | HH_BH02_9.0_190725    |                                    | ✓                                    | ✓                                                  |
| EB1919840-033     | 25-Jul-2019 08:54              | HH_BH02_10.0_190725   | ✓                                  |                                      |                                                    |
| EB1919840-034     | 25-Jul-2019 09:29              | HH_BH03_0.1_190725    |                                    | ✓                                    | ✓                                                  |
| EB1919840-035     | 25-Jul-2019 09:30              | HH_BH03_0.5_190725    | ✓                                  |                                      |                                                    |

: 12-Aug-2019 Issue Date Page

: 3 of 4 : EB1919840 Amendment 1 Work Order Client : AECOM Australia Pty Ltd



|               |                   |                      | (On Hold) SOIL<br>No analysis requested | SOIL - EA055-103<br>Moisture Content | SOIL - EP231X (solids)<br>PFAS - Full Suite (28 analytes) |
|---------------|-------------------|----------------------|-----------------------------------------|--------------------------------------|-----------------------------------------------------------|
| EB1919840-036 | 25-Jul-2019 09:30 | HH_BH03_1.0_190725   |                                         | ✓                                    | ✓                                                         |
| EB1919840-037 | 25-Jul-2019 09:30 | HH_BH03_1.5_190725   | ✓                                       |                                      |                                                           |
| EB1919840-038 | 25-Jul-2019 10:42 | HH_BH03_2.0_190725   | ✓                                       |                                      |                                                           |
| EB1919840-039 | 25-Jul-2019 10:43 | HH_BH03_3.0_190725   | ✓                                       |                                      |                                                           |
| EB1919840-040 | 25-Jul-2019 10:43 | HH_BH03_4.0_190725   | ✓                                       |                                      |                                                           |
| EB1919840-041 | 25-Jul-2019 10:44 | HH_BH03_5.0_190725   | ✓                                       |                                      |                                                           |
| EB1919840-042 | 25-Jul-2019 10:44 | HH_BH03_6.0_190725   | ✓                                       |                                      |                                                           |
| EB1919840-043 | 25-Jul-2019 10:44 | HH_BH03_7.0_190725   | ✓                                       |                                      |                                                           |
| EB1919840-044 | 25-Jul-2019 10:45 | HH_BH03_8.0_190725   | ✓                                       |                                      |                                                           |
| EB1919840-045 | 25-Jul-2019 11:05 | HH_BH03_9.0_190725   |                                         | ✓                                    | ✓                                                         |
| EB1919840-046 | 25-Jul-2019 11:05 | HH_BH03_10.0_190725  | ✓                                       |                                      |                                                           |
| EB1919840-047 | 25-Jul-2019 11:47 | HH_BH04_0.25_190725  |                                         | ✓                                    | ✓                                                         |
| EB1919840-048 | 25-Jul-2019 11:48 | HH_BH04_0.5_190725   |                                         | ✓                                    | ✓                                                         |
| EB1919840-049 | 25-Jul-2019 11:48 | HH_BH04_1.0_190725   | ✓                                       |                                      |                                                           |
| EB1919840-050 | 25-Jul-2019 11:49 | HH_BH04_1.5_190725   | ✓                                       |                                      |                                                           |
| EB1919840-051 | 25-Jul-2019 13:10 | HH_BH04_2.0_190725   | ✓                                       |                                      |                                                           |
| EB1919840-052 | 25-Jul-2019 13:11 | HH_BH04_3.0_190725   | 1                                       |                                      |                                                           |
| EB1919840-053 | 25-Jul-2019 13:11 | HH_BH04_4.0_190725   | ✓                                       |                                      |                                                           |
| EB1919840-054 | 25-Jul-2019 13:14 | HH_BH04_5.0_190725   | ✓                                       |                                      |                                                           |
| EB1919840-055 | 25-Jul-2019 13:14 | HH_BH04_6.0-1_190725 | ✓                                       |                                      |                                                           |
| EB1919840-056 | 25-Jul-2019 13:15 | HH_BH04_7.0_190725   | ✓                                       |                                      |                                                           |
| EB1919840-057 | 25-Jul-2019 13:16 | HH_BH04_8.0_190725   | 1                                       |                                      |                                                           |
| EB1919840-058 | 25-Jul-2019 13:37 | HH_BH04_9.0_190725   |                                         | ✓                                    | ✓                                                         |
| EB1919840-059 | 25-Jul-2019 13:38 | HH_BH04_10.0_190725  | 1                                       |                                      |                                                           |
| EB1919840-060 | 24-Jul-2019 14:37 | HH_QC100_190724      |                                         | ✓                                    | ✓                                                         |
| EB1919840-063 | 24-Jul-2019 15:51 | HH_QC101_190724      |                                         | ✓                                    | ✓                                                         |
| EB1919840-064 | 24-Jul-2019 16:45 | HH_QC102_190724      | ✓                                       |                                      |                                                           |
| EB1919840-065 | 25-Jul-2019 08:57 | HH_QC103_190725      | 1                                       |                                      |                                                           |
| EB1919840-067 | 25-Jul-2019 11:06 | HH_QC104_190725      | ✓                                       |                                      |                                                           |
| EB1919840-068 | 25-Jul-2019 11:47 | HH_QC105_190725      | ✓                                       |                                      |                                                           |

: 12-Aug-2019 Issue Date

Page

: 4 of 4 : EB1919840 Amendment 1 Work Order Client : AECOM Australia Pty Ltd



WATER - EP231X-LL (EB) PFAS - Full Suite Low Level (28 analytes) Matrix: WATER Client sample ID Laboratory sample Client sampling date / time HH\_QC300\_190724 EB1919840-061 24-Jul-2019 14:47 EB1919840-062 24-Jul-2019 15:37 HH\_QC301\_190724 EB1919840-066 25-Jul-2019 09:27 HH\_QC302\_190725

## Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

## Requested Deliverables

## **ACCOUNTS PAYABLE**

| AGGGGRIGIAIABLE                                                |       |                               |
|----------------------------------------------------------------|-------|-------------------------------|
| - A4 - AU Tax Invoice (INV)                                    | Email | AP_CustomerService.ANZ@aecom. |
| CAMDEN McCOSKER                                                |       |                               |
| - *AU Certificate of Analysis - NATA (COA)                     | Email | camden.mccosker@aecom.com     |
| - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)    | Email | camden.mccosker@aecom.com     |
| - *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)            | Email | camden.mccosker@aecom.com     |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN) | Email | camden.mccosker@aecom.com     |
| - A4 - AU Tax Invoice (INV)                                    | Email | camden.mccosker@aecom.com     |
| - Chain of Custody (CoC) (COC)                                 | Email | camden.mccosker@aecom.com     |
| - EDI Format - ESDAT (ESDAT)                                   | Email | camden.mccosker@aecom.com     |
| - EDI Format - XTab (XTAB)                                     | Email | camden.mccosker@aecom.com     |
| JAMES PEACHEY                                                  |       |                               |
| - *AU Certificate of Analysis - NATA (COA)                     | Email | james.peachey@aecom.com       |
| - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)    | Email | james.peachey@aecom.com       |
| - *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)            | Email | james.peachey@aecom.com       |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN) | Email | james.peachey@aecom.com       |
| - A4 - AU Tax Invoice (INV)                                    | Email | james.peachey@aecom.com       |
| - Chain of Custody (CoC) (COC)                                 | Email | james.peachey@aecom.com       |
| - EDI Format - ESDAT (ESDAT)                                   | Email | james.peachey@aecom.com       |
| - EDI Format - XTab (XTAB)                                     | Email | james.peachey@aecom.com       |
|                                                                |       |                               |



## **CERTIFICATE OF ANALYSIS**

**Work Order** : EB1919840 Page : 1 of 13

Amendment : 1

Client : AECOM Australia Pty Ltd : Environmental Division Brisbane

Contact : CAMDEN McCOSKER Contact

Address

Brisbane

Telephone Project 60609758 HH Order number 60609758 2.0

C-O-C number 2656

Sampler CAMDEN McCOSKER

Site

Quote number : BN/112/19

No. of samples received : 68 No. of samples analysed : 23

Laboratory

: Carsten Emrich

Address : 2 Byth Street Stafford QLD Australia 4053

Telephone : +61 7 3552 8616 **Date Samples Received** : 01-Aug-2019 09:40

Date Analysis Commenced : 01-Aug-2019

Issue Date : 12-Aug-2019 11:12



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.** 

## Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Kim McCabe Senior Inorganic Chemist Brisbane Inorganics, Stafford, QLD 2IC Organic Chemist Minh Wills Brisbane Organics, Stafford, QLD

Page : 2 of 13

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Ptv Ltd

Project · 60609758 HH



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X: Sample 'HH QC100 190724' shows poor matrix spike recovery due to matrix interference. Confirmed by re-extraction and re-analysis.
- Amendment (12/08/19): This report has been amended following minor ID formatting corrections. The date has been added to the end of the sample ID. All analysis results are as per the previous report

3 of 13 EB1919840 Amendment 1 Work Order : AECOM Australia Pty Ltd Client

60609758\_HH Project

| Sub-Matrix: SOIL<br>(Matrix: SOIL)            |            | Clie          | ent sample ID  | HH_BH01_0.1_190724 | HH_BH01_1.0_190724 | HH_BH01_9.0_190724 | HH_SS1_0.1_190724 | HH_SS1_0.5_190724 |
|-----------------------------------------------|------------|---------------|----------------|--------------------|--------------------|--------------------|-------------------|-------------------|
|                                               | C          | lient samplii | ng date / time | 24-Jul-2019 14:35  | 24-Jul-2019 14:36  | 24-Jul-2019 15:47  | 24-Jul-2019 15:48 | 24-Jul-2019 15:50 |
| Compound                                      | CAS Number | LOR           | Unit           | EB1919840-001      | EB1919840-003      | EB1919840-013      | EB1919840-015     | EB1919840-016     |
| ·                                             |            |               |                | Result             | Result             | Result             | Result            | Result            |
| EA055: Moisture Content (Dried @ 105          | 5-110°C)   |               |                |                    |                    |                    |                   |                   |
| Moisture Content                              |            | 0.1           | %              | 6.1                | 7.6                | 3.6                | 7.8               | 6.4               |
| EP231A: Perfluoroalkyl Sulfonic Acids         |            |               |                |                    |                    |                    |                   |                   |
| Perfluorobutane sulfonic acid (PFBS)          | 375-73-5   | 0.0002        | mg/kg          | <0.0002            | <0.0002            | <0.0002            | 0.0002            | <0.0002           |
| Perfluoropentane sulfonic acid (PFPeS)        | 2706-91-4  | 0.0002        | mg/kg          | <0.0002            | <0.0002            | <0.0002            | <0.0002           | <0.0002           |
| Perfluorohexane sulfonic acid (PFHxS)         | 355-46-4   | 0.0002        | mg/kg          | 0.0003             | 0.0003             | 0.0003             | 0.0013            | 0.0004            |
| Perfluoroheptane sulfonic acid (PFHpS)        | 375-92-8   | 0.0002        | mg/kg          | <0.0002            | <0.0002            | <0.0002            | <0.0002           | <0.0002           |
| Perfluorooctane sulfonic acid (PFOS)          | 1763-23-1  | 0.0002        | mg/kg          | 0.0112             | 0.0268             | 0.0009             | 0.0230            | 0.223             |
| Perfluorodecane sulfonic acid (PFDS)          | 335-77-3   | 0.0002        | mg/kg          | <0.0002            | <0.0002            | <0.0002            | 0.0013            | <0.0002           |
| EP231B: Perfluoroalkyl Carboxylic Ac          | ids        |               |                |                    |                    |                    |                   |                   |
| Perfluorobutanoic acid (PFBA)                 | 375-22-4   | 0.001         | mg/kg          | <0.001             | <0.001             | <0.001             | <0.001            | <0.001            |
| Perfluoropentanoic acid (PFPeA)               | 2706-90-3  | 0.0002        | mg/kg          | <0.0002            | <0.0002            | <0.0002            | 0.0007            | 0.0005            |
| Perfluorohexanoic acid (PFHxA)                | 307-24-4   | 0.0002        | mg/kg          | <0.0002            | 0.0002             | <0.0002            | 0.0007            | 0.0004            |
| Perfluoroheptanoic acid (PFHpA)               | 375-85-9   | 0.0002        | mg/kg          | <0.0002            | <0.0002            | <0.0002            | 0.0012            | 0.0004            |
| Perfluorooctanoic acid (PFOA)                 | 335-67-1   | 0.0002        | mg/kg          | <0.0002            | <0.0002            | <0.0002            | 0.0009            | 0.0002            |
| Perfluorononanoic acid (PFNA)                 | 375-95-1   | 0.0002        | mg/kg          | <0.0002            | <0.0002            | <0.0002            | 0.0011            | 0.0016            |
| Perfluorodecanoic acid (PFDA)                 | 335-76-2   | 0.0002        | mg/kg          | 0.0003             | <0.0002            | <0.0002            | 0.0026            | 0.0005            |
| Perfluoroundecanoic acid (PFUnDA)             | 2058-94-8  | 0.0002        | mg/kg          | 0.0003             | <0.0002            | <0.0002            | 0.0028            | <0.0002           |
| Perfluorododecanoic acid (PFDoDA)             | 307-55-1   | 0.0002        | mg/kg          | <0.0002            | <0.0002            | <0.0002            | 0.0005            | <0.0002           |
| Perfluorotridecanoic acid (PFTrDA)            | 72629-94-8 | 0.0002        | mg/kg          | <0.0002            | <0.0002            | <0.0002            | <0.0002           | <0.0002           |
| Perfluorotetradecanoic acid (PFTeDA)          | 376-06-7   | 0.0005        | mg/kg          | <0.0005            | <0.0005            | <0.0005            | <0.0005           | <0.0005           |
| EP231C: Perfluoroalkyl Sulfonamides           |            |               |                |                    |                    |                    |                   |                   |
| Perfluorooctane sulfonamide (FOSA)            | 754-91-6   | 0.0002        | mg/kg          | <0.0002            | <0.0002            | <0.0002            | <0.0002           | <0.0002           |
| N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.0005        | mg/kg          | <0.0005            | <0.0005            | <0.0005            | <0.0005           | <0.0005           |

: 4 of 13 : EB1919840 Amendment 1 Work Order : AECOM Australia Pty Ltd Client

60609758\_HH Project



| Sub-Matrix: SOIL (Matrix: SOIL)                                 |                        | Clie          | ent sample ID  | HH_BH01_0.1_190724 | HH_BH01_1.0_190724 | HH_BH01_9.0_190724 | HH_SS1_0.1_190724 | HH_SS1_0.5_190724 |
|-----------------------------------------------------------------|------------------------|---------------|----------------|--------------------|--------------------|--------------------|-------------------|-------------------|
|                                                                 | CI                     | lient samplii | ng date / time | 24-Jul-2019 14:35  | 24-Jul-2019 14:36  | 24-Jul-2019 15:47  | 24-Jul-2019 15:48 | 24-Jul-2019 15:50 |
| Compound                                                        | CAS Number             | LOR           | Unit           | EB1919840-001      | EB1919840-003      | EB1919840-013      | EB1919840-015     | EB1919840-016     |
|                                                                 |                        |               |                | Result             | Result             | Result             | Result            | Result            |
| EP231C: Perfluoroalkyl Sulfonamide                              | es - Continued         |               |                |                    |                    |                    |                   |                   |
| N-Ethyl perfluorooctane sulfonamide (EtFOSA)                    | 4151-50-2              | 0.0005        | mg/kg          | <0.0005            | <0.0005            | <0.0005            | <0.0005           | <0.0005           |
| N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)            | 24448-09-7             | 0.0005        | mg/kg          | <0.0005            | <0.0005            | <0.0005            | <0.0005           | <0.0005           |
| N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)             | 1691-99-2              | 0.0005        | mg/kg          | <0.0005            | <0.0005            | <0.0005            | <0.0005           | <0.0005           |
| N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | 2355-31-9              | 0.0002        | mg/kg          | <0.0002            | <0.0002            | <0.0002            | <0.0002           | <0.0002           |
| N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA)  | 2991-50-6              | 0.0002        | mg/kg          | <0.0002            | <0.0002            | <0.0002            | <0.0002           | <0.0002           |
| EP231D: (n:2) Fluorotelomer Sulfon                              | ic Acids               |               |                |                    |                    |                    |                   |                   |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                       | 757124-72-4            | 0.0005        | mg/kg          | <0.0005            | <0.0005            | <0.0005            | <0.0005           | <0.0005           |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS)                    | 27619-97-2             | 0.0005        | mg/kg          | <0.0005            | <0.0005            | <0.0005            | <0.0005           | <0.0005           |
| 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                       | 39108-34-4             | 0.0005        | mg/kg          | <0.0005            | <0.0005            | <0.0005            | <0.0005           | <0.0005           |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                     | 120226-60-0            | 0.0005        | mg/kg          | <0.0005            | <0.0005            | <0.0005            | 0.0009            | <0.0005           |
| EP231P: PFAS Sums                                               |                        |               |                |                    |                    |                    |                   |                   |
| Sum of PFAS                                                     |                        | 0.0002        | mg/kg          | 0.0121             | 0.0273             | 0.0012             | 0.0372            | 0.227             |
| Sum of PFHxS and PFOS                                           | 355-46-4/1763-23-<br>1 | 0.0002        | mg/kg          | 0.0115             | 0.0271             | 0.0012             | 0.0243            | 0.223             |
| Sum of PFAS (WA DER List)                                       |                        | 0.0002        | mg/kg          | 0.0115             | 0.0273             | 0.0012             | 0.0280            | 0.225             |
| EP231S: PFAS Surrogate                                          |                        |               |                |                    |                    |                    |                   |                   |
| 13C4-PFOS                                                       |                        | 0.0002        | %              | 79.0               | 90.0               | 94.0               | 86.5              | 83.0              |
| 13C8-PFOA                                                       |                        | 0.0002        | %              | 97.0               | 94.5               | 96.5               | 95.0              | 95.5              |

: 5 of 13 : EB1919840 Amendment 1 Work Order : AECOM Australia Pty Ltd Client

60609758\_HH Project

| Sub-Matrix: SOIL (Matrix: SOIL)                  |            | Clie         | ent sample ID  | HH_SS2_0.1_190724 | HH_SS4_0.1_190724           | HH_SS3_0.1_190724 | HH_SS3_0.5_190724 | HH_BH02_0.5_190724 |
|--------------------------------------------------|------------|--------------|----------------|-------------------|-----------------------------|-------------------|-------------------|--------------------|
|                                                  | C          | lient sampli | ng date / time | 24-Jul-2019 15:50 | 24-Jul-2019 16:00           | 24-Jul-2019 16:11 | 24-Jul-2019 16:12 | 24-Jul-2019 16:44  |
| Compound                                         | CAS Number | LOR          | Unit           | EB1919840-017     | EB1919840-017 EB1919840-018 |                   | EB1919840-020     | EB1919840-022      |
|                                                  |            |              |                | Result            | Result                      | Result            | Result            | Result             |
| EA055: Moisture Content (Dried @ 105             | 5-110°C)   |              |                |                   |                             |                   |                   |                    |
| Moisture Content                                 |            | 0.1          | %              | 11.0              | 2.8                         | 3.5               | 2.7               | 3.6                |
| EP231A: Perfluoroalkyl Sulfonic Acids            |            |              |                |                   |                             |                   |                   |                    |
| Perfluorobutane sulfonic acid (PFBS)             | 375-73-5   | 0.0002       | mg/kg          | <0.0002           | <0.0002                     | <0.0002           | <0.0002           | <0.0002            |
| Perfluoropentane sulfonic acid (PFPeS)           | 2706-91-4  | 0.0002       | mg/kg          | <0.0002           | <0.0002                     | <0.0002           | <0.0002           | <0.0002            |
| Perfluorohexane sulfonic acid (PFHxS)            | 355-46-4   | 0.0002       | mg/kg          | 0.0005            | <0.0002                     | <0.0002           | <0.0002           | <0.0002            |
| Perfluoroheptane sulfonic acid (PFHpS)           | 375-92-8   | 0.0002       | mg/kg          | <0.0002           | <0.0002                     | <0.0002           | <0.0002           | <0.0002            |
| Perfluorooctane sulfonic acid (PFOS)             | 1763-23-1  | 0.0002       | mg/kg          | 0.0076            | 0.0033                      | 0.0016            | 0.0025            | 0.0039             |
| Perfluorodecane sulfonic acid (PFDS)             | 335-77-3   | 0.0002       | mg/kg          | 0.0047            | <0.0002                     | <0.0002           | <0.0002           | <0.0002            |
| EP231B: Perfluoroalkyl Carboxylic Ac             | ids        |              |                |                   |                             |                   |                   |                    |
| Perfluorobutanoic acid (PFBA)                    | 375-22-4   | 0.001        | mg/kg          | <0.001            | <0.001                      | <0.001            | <0.001            | <0.001             |
| Perfluoropentanoic acid (PFPeA)                  | 2706-90-3  | 0.0002       | mg/kg          | 0.0003            | <0.0002                     | 0.0002            | 0.0005            | 0.0002             |
| Perfluorohexanoic acid (PFHxA)                   | 307-24-4   | 0.0002       | mg/kg          | 0.0003            | <0.0002                     | 0.0003            | 0.0006            | <0.0002            |
| Perfluoroheptanoic acid (PFHpA)                  | 375-85-9   | 0.0002       | mg/kg          | 0.0004            | <0.0002                     | 0.0009            | 0.0011            | 0.0002             |
| Perfluorooctanoic acid (PFOA)                    | 335-67-1   | 0.0002       | mg/kg          | 0.0004            | 0.0002                      | 0.0009            | 0.0007            | <0.0002            |
| Perfluorononanoic acid (PFNA)                    | 375-95-1   | 0.0002       | mg/kg          | 0.0004            | 0.0003                      | 0.0012            | 0.0011            | 0.0003             |
| Perfluorodecanoic acid (PFDA)                    | 335-76-2   | 0.0002       | mg/kg          | 0.0006            | 0.0006                      | 0.0048            | 0.0033            | <0.0002            |
| Perfluoroundecanoic acid (PFUnDA)                | 2058-94-8  | 0.0002       | mg/kg          | 0.0008            | 0.0005                      | 0.0037            | 0.0023            | <0.0002            |
| Perfluorododecanoic acid (PFDoDA)                | 307-55-1   | 0.0002       | mg/kg          | 0.0002            | <0.0002                     | 0.0006            | 0.0006            | <0.0002            |
| Perfluorotridecanoic acid (PFTrDA)               | 72629-94-8 | 0.0002       | mg/kg          | <0.0002           | <0.0002                     | <0.0002           | 0.0002            | <0.0002            |
| Perfluorotetradecanoic acid (PFTeDA)             | 376-06-7   | 0.0005       | mg/kg          | <0.0005           | <0.0005                     | <0.0005           | <0.0005           | <0.0005            |
| EP231C: Perfluoroalkyl Sulfonamides              |            |              |                |                   |                             |                   |                   |                    |
| Perfluorooctane sulfonamide (FOSA)               | 754-91-6   | 0.0002       | mg/kg          | <0.0002           | <0.0002                     | <0.0002           | <0.0002           | <0.0002            |
| N-Methyl perfluorooctane<br>sulfonamide (MeFOSA) | 31506-32-8 | 0.0005       | mg/kg          | <0.0005           | <0.0005                     | <0.0005           | <0.0005           | <0.0005            |

: 6 of 13 : EB1919840 Amendment 1 Work Order : AECOM Australia Pty Ltd Client

60609758\_HH Project



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                              |                        | Clie         | ent sample ID  | HH_SS2_0.1_190724 | HH_SS4_0.1_190724 | HH_SS3_0.1_190724 | HH_SS3_0.5_190724 | HH_BH02_0.5_190724 |
|-----------------------------------------------------------------|------------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|--------------------|
|                                                                 | Ci                     | ient samplii | ng date / time | 24-Jul-2019 15:50 | 24-Jul-2019 16:00 | 24-Jul-2019 16:11 | 24-Jul-2019 16:12 | 24-Jul-2019 16:44  |
| Compound                                                        | CAS Number             | LOR          | Unit           | EB1919840-017     | EB1919840-018     | EB1919840-019     | EB1919840-020     | EB1919840-022      |
|                                                                 |                        |              |                | Result            | Result            | Result            | Result            | Result             |
| EP231C: Perfluoroalkyl Sulfonamide                              | es - Continued         |              |                |                   |                   |                   |                   |                    |
| N-Ethyl perfluorooctane sulfonamide (EtFOSA)                    | 4151-50-2              | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005            |
| N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)            | 24448-09-7             | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005            |
| N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)             | 1691-99-2              | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005            |
| N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | 2355-31-9              | 0.0002       | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002            |
| N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA)  | 2991-50-6              | 0.0002       | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002            |
| EP231D: (n:2) Fluorotelomer Sulfon                              | nic Acids              |              |                |                   |                   |                   |                   |                    |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                       | 757124-72-4            | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005            |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS)                    | 27619-97-2             | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005            |
| 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                       | 39108-34-4             | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <0.0005           | 0.0007            | <0.0005            |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                     | 120226-60-0            | 0.0005       | mg/kg          | <0.0005           | <0.0005           | 0.0029            | 0.0061            | <0.0005            |
| EP231P: PFAS Sums                                               |                        |              |                |                   |                   |                   |                   |                    |
| Sum of PFAS                                                     |                        | 0.0002       | mg/kg          | 0.0162            | 0.0049            | 0.0171            | 0.0197            | 0.0046             |
| Sum of PFHxS and PFOS                                           | 355-46-4/1763-23-<br>1 | 0.0002       | mg/kg          | 0.0081            | 0.0033            | 0.0016            | 0.0025            | 0.0039             |
| Sum of PFAS (WA DER List)                                       |                        | 0.0002       | mg/kg          | 0.0095            | 0.0035            | 0.0039            | 0.0061            | 0.0043             |
| EP231S: PFAS Surrogate                                          |                        |              |                |                   |                   |                   |                   |                    |
| 13C4-PFOS                                                       |                        | 0.0002       | %              | 82.5              | 71.5              | 74.0              | 71.0              | 85.5               |
| 13C8-PFOA                                                       |                        | 0.0002       | %              | 92.5              | 92.5              | 92.5              | 84.5              | 95.5               |

7 of 13 EB1919840 Amendment 1 Work Order : AECOM Australia Pty Ltd Client

60609758\_HH Project



| Sub-Matrix: SOIL<br>(Matrix: SOIL)            |            | Clie         | ent sample ID  | HH_BH02_1.0_190724 | HH_BH02_9.0_190725 | HH_BH03_0.1_190725 | HH_BH03_1.0_190725 | HH_BH03_9.0_190725 |
|-----------------------------------------------|------------|--------------|----------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|                                               | C          | lient sampli | ng date / time | 24-Jul-2019 16:44  | 25-Jul-2019 08:54  | 25-Jul-2019 09:29  | 25-Jul-2019 09:30  | 25-Jul-2019 11:05  |
| Compound                                      | CAS Number | LOR          | Unit           | EB1919840-023      | EB1919840-032      | EB1919840-034      | EB1919840-036      | EB1919840-045      |
| •                                             |            |              |                | Result             | Result             | Result             | Result             | Result             |
| EA055: Moisture Content (Dried @ 108          | 5-110°C)   |              |                |                    |                    |                    |                    |                    |
| Moisture Content                              |            | 0.1          | %              | 4.2                | 4.1                | 6.0                | 5.4                | 4.3                |
| EP231A: Perfluoroalkyl Sulfonic Acids         | ,          |              |                |                    |                    |                    |                    |                    |
| Perfluorobutane sulfonic acid (PFBS)          | 375-73-5   | 0.0002       | mg/kg          | <0.0002            | <0.0002            | <0.0002            | <0.0002            | <0.0002            |
| Perfluoropentane sulfonic acid (PFPeS)        | 2706-91-4  | 0.0002       | mg/kg          | <0.0002            | <0.0002            | <0.0002            | <0.0002            | <0.0002            |
| Perfluorohexane sulfonic acid (PFHxS)         | 355-46-4   | 0.0002       | mg/kg          | <0.0002            | <0.0002            | 0.0008             | 0.0002             | 0.0109             |
| Perfluoroheptane sulfonic acid (PFHpS)        | 375-92-8   | 0.0002       | mg/kg          | <0.0002            | <0.0002            | <0.0002            | <0.0002            | 0.0008             |
| Perfluorooctane sulfonic acid (PFOS)          | 1763-23-1  | 0.0002       | mg/kg          | 0.0023             | 0.0002             | 0.0115             | 0.0665             | 0.0330             |
| Perfluorodecane sulfonic acid (PFDS)          | 335-77-3   | 0.0002       | mg/kg          | <0.0002            | <0.0002            | 0.0015             | <0.0002            | <0.0002            |
| EP231B: Perfluoroalkyl Carboxylic Ac          | cids       |              |                |                    |                    |                    |                    |                    |
| Perfluorobutanoic acid (PFBA)                 | 375-22-4   | 0.001        | mg/kg          | <0.001             | <0.001             | <0.001             | <0.001             | <0.001             |
| Perfluoropentanoic acid (PFPeA)               | 2706-90-3  | 0.0002       | mg/kg          | 0.0002             | <0.0002            | <0.0002            | <0.0002            | <0.0002            |
| Perfluorohexanoic acid (PFHxA)                | 307-24-4   | 0.0002       | mg/kg          | <0.0002            | <0.0002            | <0.0002            | <0.0002            | <0.0002            |
| Perfluoroheptanoic acid (PFHpA)               | 375-85-9   | 0.0002       | mg/kg          | <0.0002            | <0.0002            | <0.0002            | <0.0002            | <0.0002            |
| Perfluorooctanoic acid (PFOA)                 | 335-67-1   | 0.0002       | mg/kg          | <0.0002            | <0.0002            | 0.0002             | <0.0002            | 0.0008             |
| Perfluorononanoic acid (PFNA)                 | 375-95-1   | 0.0002       | mg/kg          | 0.0002             | <0.0002            | <0.0002            | <0.0002            | <0.0002            |
| Perfluorodecanoic acid (PFDA)                 | 335-76-2   | 0.0002       | mg/kg          | <0.0002            | <0.0002            | <0.0002            | <0.0002            | <0.0002            |
| Perfluoroundecanoic acid (PFUnDA)             | 2058-94-8  | 0.0002       | mg/kg          | <0.0002            | <0.0002            | <0.0002            | <0.0002            | <0.0002            |
| Perfluorododecanoic acid (PFDoDA)             | 307-55-1   | 0.0002       | mg/kg          | <0.0002            | <0.0002            | <0.0002            | <0.0002            | <0.0002            |
| Perfluorotridecanoic acid (PFTrDA)            | 72629-94-8 | 0.0002       | mg/kg          | <0.0002            | <0.0002            | <0.0002            | <0.0002            | <0.0002            |
| Perfluorotetradecanoic acid (PFTeDA)          | 376-06-7   | 0.0005       | mg/kg          | <0.0005            | <0.0005            | <0.0005            | <0.0005            | <0.0005            |
| EP231C: Perfluoroalkyl Sulfonamides           |            |              |                |                    |                    |                    |                    |                    |
| Perfluorooctane sulfonamide (FOSA)            | 754-91-6   | 0.0002       | mg/kg          | <0.0002            | <0.0002            | 0.0004             | <0.0002            | <0.0002            |
| N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.0005       | mg/kg          | <0.0005            | <0.0005            | <0.0005            | <0.0005            | <0.0005            |

: 8 of 13 : EB1919840 Amendment 1 Work Order : AECOM Australia Pty Ltd Client

60609758\_HH Project



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                              | Client sample ID       |               |                | HH_BH02_1.0_190724 | HH_BH02_9.0_190725 | HH_BH03_0.1_190725 | HH_BH03_1.0_190725 | HH_BH03_9.0_190725 |
|-----------------------------------------------------------------|------------------------|---------------|----------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|                                                                 | C                      | lient samplii | ng date / time | 24-Jul-2019 16:44  | 25-Jul-2019 08:54  | 25-Jul-2019 09:29  | 25-Jul-2019 09:30  | 25-Jul-2019 11:05  |
| Compound                                                        | CAS Number             | LOR           | Unit           | EB1919840-023      | EB1919840-032      | EB1919840-034      | EB1919840-036      | EB1919840-045      |
|                                                                 |                        |               |                | Result             | Result             | Result             | Result             | Result             |
| EP231C: Perfluoroalkyl Sulfonamide                              | s - Continued          |               |                |                    |                    |                    |                    |                    |
| N-Ethyl perfluorooctane sulfonamide (EtFOSA)                    | 4151-50-2              | 0.0005        | mg/kg          | <0.0005            | <0.0005            | <0.0005            | <0.0005            | <0.0005            |
| N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)            | 24448-09-7             | 0.0005        | mg/kg          | <0.0005            | <0.0005            | <0.0005            | <0.0005            | <0.0005            |
| N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)             | 1691-99-2              | 0.0005        | mg/kg          | <0.0005            | <0.0005            | <0.0005            | <0.0005            | <0.0005            |
| N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | 2355-31-9              | 0.0002        | mg/kg          | <0.0002            | <0.0002            | <0.0002            | <0.0002            | <0.0002            |
| N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA)  | 2991-50-6              | 0.0002        | mg/kg          | <0.0002            | <0.0002            | <0.0002            | <0.0002            | <0.0002            |
| EP231D: (n:2) Fluorotelomer Sulfon                              | ic Acids               |               |                |                    |                    |                    |                    |                    |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                       | 757124-72-4            | 0.0005        | mg/kg          | <0.0005            | <0.0005            | <0.0005            | <0.0005            | <0.0005            |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS)                    | 27619-97-2             | 0.0005        | mg/kg          | <0.0005            | <0.0005            | <0.0005            | <0.0005            | <0.0005            |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS)                    | 39108-34-4             | 0.0005        | mg/kg          | <0.0005            | <0.0005            | <0.0005            | <0.0005            | <0.0005            |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                     | 120226-60-0            | 0.0005        | mg/kg          | <0.0005            | <0.0005            | <0.0005            | <0.0005            | <0.0005            |
| EP231P: PFAS Sums                                               |                        |               |                |                    |                    |                    |                    |                    |
| Sum of PFAS                                                     |                        | 0.0002        | mg/kg          | 0.0027             | 0.0002             | 0.0144             | 0.0667             | 0.0455             |
| Sum of PFHxS and PFOS                                           | 355-46-4/1763-23-<br>1 | 0.0002        | mg/kg          | 0.0023             | 0.0002             | 0.0123             | 0.0667             | 0.0439             |
| Sum of PFAS (WA DER List)                                       |                        | 0.0002        | mg/kg          | 0.0025             | 0.0002             | 0.0125             | 0.0667             | 0.0447             |
| EP231S: PFAS Surrogate                                          |                        |               |                |                    |                    |                    |                    |                    |
| 13C4-PFOS                                                       |                        | 0.0002        | %              | 89.5               | 87.5               | 86.5               | 87.0               | 94.5               |
| 13C8-PFOA                                                       |                        | 0.0002        | %              | 96.0               | 97.0               | 93.0               | 94.0               | 103                |

: 9 of 13 : EB1919840 Amendment 1 Work Order : AECOM Australia Pty Ltd Client

60609758\_HH Project

| Sub-Matrix: SOIL<br>(Matrix: SOIL)            |            | Clie         | ent sample ID  | HH_BH04_0.25_19072<br>5 | HH_BH04_0.5_190725 | HH_BH04_9.0_190725 | HH_QC100_190724   | HH_QC101_190724   |
|-----------------------------------------------|------------|--------------|----------------|-------------------------|--------------------|--------------------|-------------------|-------------------|
|                                               | C          | lient sampli | ng date / time | 25-Jul-2019 11:47       | 25-Jul-2019 11:48  | 25-Jul-2019 13:37  | 24-Jul-2019 14:37 | 24-Jul-2019 15:51 |
| Compound                                      | CAS Number | LOR          | Unit           | EB1919840-047           | EB1919840-048      | EB1919840-058      | EB1919840-060     | EB1919840-063     |
|                                               |            |              |                | Result                  | Result             | Result             | Result            | Result            |
| EA055: Moisture Content (Dried @ 109          | 5-110°C)   |              |                |                         |                    |                    |                   |                   |
| Moisture Content                              |            | 0.1          | %              | 7.7                     | 8.2                | 5.3                | 6.4               | 6.8               |
| EP231A: Perfluoroalkyl Sulfonic Acids         | 5          |              |                |                         |                    |                    |                   |                   |
| Perfluorobutane sulfonic acid (PFBS)          | 375-73-5   | 0.0002       | mg/kg          | <0.0002                 | <0.0002            | <0.0002            | <0.0002           | <0.0002           |
| Perfluoropentane sulfonic acid (PFPeS)        | 2706-91-4  | 0.0002       | mg/kg          | <0.0002                 | <0.0002            | <0.0002            | <0.0002           | <0.0002           |
| Perfluorohexane sulfonic acid (PFHxS)         | 355-46-4   | 0.0002       | mg/kg          | <0.0002                 | 0.0005             | 0.0006             | <0.0002           | 0.0003            |
| Perfluoroheptane sulfonic acid (PFHpS)        | 375-92-8   | 0.0002       | mg/kg          | <0.0002                 | 0.0006             | <0.0002            | <0.0002           | <0.0002           |
| Perfluorooctane sulfonic acid (PFOS)          | 1763-23-1  | 0.0002       | mg/kg          | 0.0217                  | 0.0193             | 0.0006             | 0.0067            | 0.186             |
| Perfluorodecane sulfonic acid (PFDS)          | 335-77-3   | 0.0002       | mg/kg          | <0.0002                 | <0.0002            | <0.0002            | <0.0002           | <0.0002           |
| EP231B: Perfluoroalkyl Carboxylic Ad          | cids       |              |                |                         |                    |                    |                   |                   |
| Perfluorobutanoic acid (PFBA)                 | 375-22-4   | 0.001        | mg/kg          | <0.001                  | <0.001             | <0.001             | <0.001            | <0.001            |
| Perfluoropentanoic acid (PFPeA)               | 2706-90-3  | 0.0002       | mg/kg          | <0.0002                 | <0.0002            | <0.0002            | <0.0002           | 0.0004            |
| Perfluorohexanoic acid (PFHxA)                | 307-24-4   | 0.0002       | mg/kg          | 0.0002                  | <0.0002            | <0.0002            | <0.0002           | 0.0003            |
| Perfluoroheptanoic acid (PFHpA)               | 375-85-9   | 0.0002       | mg/kg          | <0.0002                 | <0.0002            | <0.0002            | <0.0002           | 0.0003            |
| Perfluorooctanoic acid (PFOA)                 | 335-67-1   | 0.0002       | mg/kg          | <0.0002                 | <0.0002            | <0.0002            | <0.0002           | <0.0002           |
| Perfluorononanoic acid (PFNA)                 | 375-95-1   | 0.0002       | mg/kg          | <0.0002                 | <0.0002            | <0.0002            | <0.0002           | 0.0016            |
| Perfluorodecanoic acid (PFDA)                 | 335-76-2   | 0.0002       | mg/kg          | <0.0002                 | <0.0002            | <0.0002            | <0.0002           | 0.0004            |
| Perfluoroundecanoic acid (PFUnDA)             | 2058-94-8  | 0.0002       | mg/kg          | <0.0002                 | <0.0002            | <0.0002            | 0.0002            | <0.0002           |
| Perfluorododecanoic acid (PFDoDA)             | 307-55-1   | 0.0002       | mg/kg          | <0.0002                 | <0.0002            | <0.0002            | <0.0002           | <0.0002           |
| Perfluorotridecanoic acid (PFTrDA)            | 72629-94-8 | 0.0002       | mg/kg          | <0.0002                 | <0.0002            | <0.0002            | <0.0002           | <0.0002           |
| Perfluorotetradecanoic acid (PFTeDA)          | 376-06-7   | 0.0005       | mg/kg          | <0.0005                 | <0.0005            | <0.0005            | <0.0005           | <0.0005           |
| EP231C: Perfluoroalkyl Sulfonamides           |            |              |                |                         |                    |                    |                   |                   |
| Perfluorooctane sulfonamide (FOSA)            | 754-91-6   | 0.0002       | mg/kg          | <0.0002                 | <0.0002            | <0.0002            | <0.0002           | <0.0002           |
| N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.0005       | mg/kg          | <0.0005                 | <0.0005            | <0.0005            | <0.0005           | <0.0005           |

: 10 of 13 : EB1919840 Amendment 1 Work Order : AECOM Australia Pty Ltd Client

60609758\_HH Project

| Sub-Matrix: SOIL<br>(Matrix: SOIL)                              |                        | Clie         | ent sample ID  | HH_BH04_0.25_19072<br>5 | HH_BH04_0.5_190725 | HH_BH04_9.0_190725 | HH_QC100_190724   | HH_QC101_190724   |
|-----------------------------------------------------------------|------------------------|--------------|----------------|-------------------------|--------------------|--------------------|-------------------|-------------------|
|                                                                 | C                      | lient sampli | ng date / time | 25-Jul-2019 11:47       | 25-Jul-2019 11:48  | 25-Jul-2019 13:37  | 24-Jul-2019 14:37 | 24-Jul-2019 15:51 |
| Compound                                                        | CAS Number             | LOR          | Unit           | EB1919840-047           | EB1919840-048      | EB1919840-058      | EB1919840-060     | EB1919840-063     |
|                                                                 |                        |              |                | Result                  | Result             | Result             | Result            | Result            |
| EP231C: Perfluoroalkyl Sulfonamide                              | es - Continued         |              |                |                         |                    |                    |                   |                   |
| N-Ethyl perfluorooctane sulfonamide (EtFOSA)                    | 4151-50-2              | 0.0005       | mg/kg          | <0.0005                 | <0.0005            | <0.0005            | <0.0005           | <0.0005           |
| N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)            | 24448-09-7             | 0.0005       | mg/kg          | <0.0005                 | <0.0005            | <0.0005            | <0.0005           | <0.0005           |
| N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)             | 1691-99-2              | 0.0005       | mg/kg          | <0.0005                 | <0.0005            | <0.0005            | <0.0005           | <0.0005           |
| N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | 2355-31-9              | 0.0002       | mg/kg          | <0.0002                 | <0.0002            | <0.0002            | <0.0002           | <0.0002           |
| N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA)  | 2991-50-6              | 0.0002       | mg/kg          | <0.0002                 | <0.0002            | <0.0002            | <0.0002           | <0.0002           |
| EP231D: (n:2) Fluorotelomer Sulfor                              | nic Acids              |              |                |                         |                    |                    |                   |                   |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                       | 757124-72-4            | 0.0005       | mg/kg          | <0.0005                 | <0.0005            | <0.0005            | <0.0005           | <0.0005           |
| 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                       | 27619-97-2             | 0.0005       | mg/kg          | <0.0005                 | <0.0005            | <0.0005            | <0.0005           | <0.0005           |
| 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                       | 39108-34-4             | 0.0005       | mg/kg          | <0.0005                 | <0.0005            | <0.0005            | <0.0005           | <0.0005           |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                     | 120226-60-0            | 0.0005       | mg/kg          | <0.0005                 | <0.0005            | <0.0005            | <0.0005           | <0.0005           |
| EP231P: PFAS Sums                                               |                        |              |                |                         |                    |                    |                   |                   |
| Sum of PFAS                                                     |                        | 0.0002       | mg/kg          | 0.0219                  | 0.0204             | 0.0012             | 0.0069            | 0.189             |
| Sum of PFHxS and PFOS                                           | 355-46-4/1763-23-<br>1 | 0.0002       | mg/kg          | 0.0217                  | 0.0198             | 0.0012             | 0.0067            | 0.186             |
| Sum of PFAS (WA DER List)                                       |                        | 0.0002       | mg/kg          | 0.0219                  | 0.0198             | 0.0012             | 0.0067            | 0.187             |
| EP231S: PFAS Surrogate                                          |                        |              |                |                         |                    |                    |                   |                   |
| 13C4-PFOS                                                       |                        | 0.0002       | %              | 89.5                    | 92.0               | 104                | 71.0              | 73.5              |
| 13C8-PFOA                                                       |                        | 0.0002       | %              | 94.0                    | 97.5               | 104                | 78.5              | 77.5              |

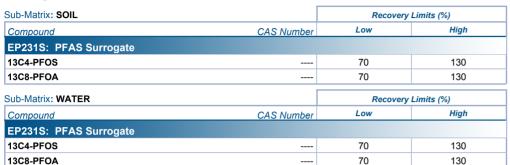
: 11 of 13 : EB1919840 Amendment 1 Work Order : AECOM Australia Pty Ltd Client

60609758\_HH Project

| Sub-Matrix: WATER (Matrix: WATER)                |            | Clie         | ent sample ID  | HH_QC300_190724   | HH_QC301_190724   | HH_QC302_190725   |             |  |
|--------------------------------------------------|------------|--------------|----------------|-------------------|-------------------|-------------------|-------------|--|
|                                                  | C          | lient sampli | ng date / time | 24-Jul-2019 14:47 | 24-Jul-2019 15:37 | 25-Jul-2019 09:27 |             |  |
| Compound                                         | CAS Number | LOR          | Unit           | EB1919840-061     | EB1919840-062     | EB1919840-066     |             |  |
|                                                  |            |              |                | Result            | Result            | Result            |             |  |
| EP231A: Perfluoroalkyl Sulfonic Acids            |            |              |                |                   |                   |                   |             |  |
| Perfluorobutane sulfonic acid (PFBS)             | 375-73-5   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            |             |  |
| Perfluoropentane sulfonic acid (PFPeS)           | 2706-91-4  | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            |             |  |
| Perfluorohexane sulfonic acid (PFHxS)            | 355-46-4   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            |             |  |
| Perfluoroheptane sulfonic acid (PFHpS)           | 375-92-8   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            |             |  |
| Perfluorooctane sulfonic acid (PFOS)             | 1763-23-1  | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            |             |  |
| Perfluorodecane sulfonic acid (PFDS)             | 335-77-3   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            |             |  |
| EP231B: Perfluoroalkyl Carboxylic Acids          | 5          |              |                |                   |                   |                   |             |  |
| Perfluorobutanoic acid (PFBA)                    | 375-22-4   | 0.01         | μg/L           | <0.01             | <0.01             | <0.01             |             |  |
| Perfluoropentanoic acid (PFPeA)                  | 2706-90-3  | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            |             |  |
| Perfluorohexanoic acid (PFHxA)                   | 307-24-4   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            |             |  |
| Perfluoroheptanoic acid (PFHpA)                  | 375-85-9   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            |             |  |
| Perfluorooctanoic acid (PFOA)                    | 335-67-1   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            |             |  |
| Perfluorononanoic acid (PFNA)                    | 375-95-1   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            |             |  |
| Perfluorodecanoic acid (PFDA)                    | 335-76-2   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            |             |  |
| Perfluoroundecanoic acid (PFUnDA)                | 2058-94-8  | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <b></b>     |  |
| Perfluorododecanoic acid (PFDoDA)                | 307-55-1   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            |             |  |
| Perfluorotridecanoic acid (PFTrDA)               | 72629-94-8 | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <del></del> |  |
| Perfluorotetradecanoic acid (PFTeDA)             | 376-06-7   | 0.005        | μg/L           | <0.005            | <0.005            | <0.005            |             |  |
| EP231C: Perfluoroalkyl Sulfonamides              |            |              |                |                   |                   |                   |             |  |
| Perfluorooctane sulfonamide (FOSA)               | 754-91-6   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            |             |  |
| N-Methyl perfluorooctane<br>sulfonamide (MeFOSA) | 31506-32-8 | 0.005        | μg/L           | <0.005            | <0.005            | <0.005            |             |  |
| N-Ethyl perfluorooctane sulfonamide (EtFOSA)     | 4151-50-2  | 0.005        | μg/L           | <0.005            | <0.005            | <0.005            |             |  |

: 12 of 13 : EB1919840 Amendment 1 Work Order : AECOM Australia Pty Ltd Client

60609758\_HH Project


| Sub-Matrix: WATER (Matrix: WATER)                               | Client sample ID       |               |                | HH_QC300_190724   | HH_QC301_190724   | HH_QC302_190725   | <br> |
|-----------------------------------------------------------------|------------------------|---------------|----------------|-------------------|-------------------|-------------------|------|
|                                                                 | CI                     | lient samplii | ng date / time | 24-Jul-2019 14:47 | 24-Jul-2019 15:37 | 25-Jul-2019 09:27 | <br> |
| Compound                                                        | CAS Number             | LOR           | Unit           | EB1919840-061     | EB1919840-062     | EB1919840-066     | <br> |
|                                                                 |                        |               |                | Result            | Result            | Result            | <br> |
| EP231C: Perfluoroalkyl Sulfonamides                             | s - Continued          |               |                |                   |                   |                   |      |
| N-Methyl perfluorooctane                                        | 24448-09-7             | 0.005         | μg/L           | <0.005            | <0.005            | <0.005            | <br> |
| sulfonamidoethanol (MeFOSE)                                     |                        | 0.005         |                | <0.005            | <0.005            | <0.005            |      |
| N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)             | 1691-99-2              | 0.005         | μg/L           | <0.005            | <0.005            | <0.005            | <br> |
| N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | 2355-31-9              | 0.002         | μg/L           | <0.002            | <0.002            | <0.002            | <br> |
| N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA)  | 2991-50-6              | 0.002         | μg/L           | <0.002            | <0.002            | <0.002            | <br> |
| EP231D: (n:2) Fluorotelomer Sulfonio                            | c Acids                |               |                |                   |                   |                   |      |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                       | 757124-72-4            | 0.005         | μg/L           | <0.005            | <0.005            | <0.005            | <br> |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS)                    | 27619-97-2             | 0.005         | μg/L           | <0.005            | <0.005            | <0.005            | <br> |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS)                    | 39108-34-4             | 0.005         | μg/L           | <0.005            | <0.005            | <0.005            | <br> |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                     | 120226-60-0            | 0.005         | μg/L           | <0.005            | <0.005            | <0.005            | <br> |
| EP231P: PFAS Sums                                               |                        |               |                |                   |                   |                   |      |
| Sum of PFAS                                                     |                        | 0.002         | μg/L           | <0.002            | <0.002            | <0.002            | <br> |
| Sum of PFHxS and PFOS                                           | 355-46-4/1763-23-<br>1 | 0.002         | μg/L           | <0.002            | <0.002            | <0.002            | <br> |
| Sum of PFAS (WA DER List)                                       |                        | 0.002         | μg/L           | <0.002            | <0.002            | <0.002            | <br> |
| EP231S: PFAS Surrogate                                          |                        |               |                |                   |                   |                   |      |
| 13C4-PFOS                                                       |                        | 0.002         | %              | 86.6              | 80.0              | 79.7              | <br> |
| 13C8-PFOA                                                       |                        | 0.002         | %              | 97.5              | 102               | 99.4              | <br> |

Page : 13 of 13

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd

Project : 60609758\_HH

# Surrogate Control Limits







#### **QUALITY CONTROL REPORT**

· 12-Aug-2019

**Work Order** : **EB1919840** Page : 1 of 16

Amendment : 1

Client : AECOM Australia Pty Ltd Laboratory : Environmental Division Brisbane

Contact : CAMDEN McCOSKER Contact : Carsten Emrich

Address : 2 Byth Street Stafford QLD Australia 4053

Brisbane
Telephone : ---- Telephone

 Telephone
 : --- Telephone
 : +61 7 3552 8616

 Project
 : 60609758\_HH
 Date Samples Received
 : 01-Aug-2019

 Order number
 : 60609758 2.0
 Date Analysis Commenced
 : 01-Aug-2019

C-O-C number 2656 Issue Date

Sampler : CAMDEN McCOSKER

Site : ----

Quote number : BN/112/19

No. of samples received : 68

No. of samples analysed : 23

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Kim McCabe Senior Inorganic Chemist Brisbane Inorganics, Stafford, QLD Minh Wills 2IC Organic Chemist Brisbane Organics, Stafford, QLD

Page : 2 of 16

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd

Project : 60609758 HH



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

| ub-Matrix: <b>SOIL</b> |                            |                                                |            |        | Laboratory Duplicate (DUP) Report |                 |                  |         |                     |  |  |
|------------------------|----------------------------|------------------------------------------------|------------|--------|-----------------------------------|-----------------|------------------|---------|---------------------|--|--|
| Laboratory sample ID   | Client sample ID           | Method: Compound                               | CAS Number | LOR    | Unit                              | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |  |
| EA055: Moisture Co     | ontent (Dried @ 105-110°C) | (QC Lot: 2501989)                              |            |        |                                   |                 |                  |         |                     |  |  |
| EB1919839-001          | Anonymous                  | EA055: Moisture Content                        |            | 0.1    | %                                 | 13.8            | 14.1             | 2.41    | 0% - 20%            |  |  |
| EB1919839-027          | Anonymous                  | EA055: Moisture Content                        |            | 0.1    | %                                 | 5.7             | 5.5              | 4.13    | 0% - 20%            |  |  |
| EA055: Moisture Co     | ntent (Dried @ 105-110°C)  | (QC Lot: 2501990)                              |            |        |                                   |                 |                  |         |                     |  |  |
| EB1919840-013          | HH_BH01_9.0_190724         | EA055: Moisture Content                        |            | 0.1    | %                                 | 3.6             | 3.6              | 0.00    | 0% - 20%            |  |  |
| EB1919840-034          | HH_BH03_0.1_190725         | EA055: Moisture Content                        |            | 0.1    | %                                 | 6.0             | 5.9              | 2.36    | 0% - 20%            |  |  |
| EP231A: Perfluoroa     | Ikyl Sulfonic Acids (QC Lo | t: 2501993)                                    |            |        |                                   |                 |                  |         |                     |  |  |
| EB1919839-046          | Anonymous                  | EP231X: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5   | 0.0002 | mg/kg                             | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
|                        |                            | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4  | 0.0002 | mg/kg                             | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
|                        |                            | EP231X: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4   | 0.0002 | mg/kg                             | 0.0013          | 0.0014           | 0.00    | No Limit            |  |  |
|                        |                            | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8   | 0.0002 | mg/kg                             | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
|                        |                            | EP231X: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1  | 0.0002 | mg/kg                             | 0.0413          | 0.0451           | 8.75    | 0% - 20%            |  |  |
|                        |                            | EP231X: Perfluorodecane sulfonic acid (PFDS)   | 335-77-3   | 0.0002 | mg/kg                             | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
| EB1919840-019          | HH_SS3_0.1_190724          | EP231X: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5   | 0.0002 | mg/kg                             | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
|                        |                            | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4  | 0.0002 | mg/kg                             | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
|                        |                            | EP231X: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4   | 0.0002 | mg/kg                             | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
|                        |                            | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8   | 0.0002 | mg/kg                             | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
|                        |                            | EP231X: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1  | 0.0002 | mg/kg                             | 0.0016          | 0.0015           | 0.00    | No Limit            |  |  |
|                        |                            | EP231X: Perfluorodecane sulfonic acid (PFDS)   | 335-77-3   | 0.0002 | mg/kg                             | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
| EP231A: Perfluoroa     | Ikyl Sulfonic Acids (QC Lo | t: 2501997)                                    |            |        |                                   |                 |                  |         |                     |  |  |
| EB1919840-063          | HH_QC101_190724            | EP231X: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5   | 0.0002 | mg/kg                             | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
|                        |                            | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4  | 0.0002 | mg/kg                             | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
|                        |                            | EP231X: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4   | 0.0002 | mg/kg                             | 0.0003          | 0.0004           | 0.00    | No Limit            |  |  |
|                        |                            | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8   | 0.0002 | mg/kg                             | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
|                        |                            | EP231X: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1  | 0.0002 | mg/kg                             | 0.186           | 0.207            | 10.8    | 0% - 20%            |  |  |

Page : 3 of 16

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd



| Sub-Matrix: SOIL     |                           |                                                |            |        |       | Laboratory      | Duplicate (DUP) Report | t       |                     |
|----------------------|---------------------------|------------------------------------------------|------------|--------|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID          | Method: Compound                               | CAS Number | LOR    | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231A: Perfluoroa   | lkyl Sulfonic Acids (QC L | .ot: 2501997) - continued                      |            |        |       |                 |                        |         |                     |
| EB1919840-063        | HH_QC101_190724           | EP231X: Perfluorodecane sulfonic acid (PFDS)   | 335-77-3   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
| EB1919842-019        | Anonymous                 | EP231X: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4  | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4   | 0.0002 | mg/kg | 0.0013          | 0.0015                 | 14.8    | No Limit            |
|                      |                           | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1  | 0.0002 | mg/kg | 0.0144          | 0.0151                 | 5.40    | 0% - 20%            |
|                      |                           | EP231X: Perfluorodecane sulfonic acid (PFDS)   | 335-77-3   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
| EP231B: Perfluoroa   | alkyl Carboxylic Acids (Q | C Lot: 2501993)                                |            |        |       |                 |                        |         |                     |
| EB1919839-046        | Anonymous                 | EP231X: Perfluoropentanoic acid (PFPeA)        | 2706-90-3  | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      | -                         | EP231X: Perfluorohexanoic acid (PFHxA)         | 307-24-4   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluoroheptanoic acid (PFHpA)        | 375-85-9   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorooctanoic acid (PFOA)          | 335-67-1   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorononanoic acid (PFNA)          | 375-95-1   | 0.0002 | mg/kg | 0.0006          | 0.0006                 | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorodecanoic acid (PFDA)          | 335-76-2   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluoroundecanoic acid (PFUnDA)      | 2058-94-8  | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorododecanoic acid (PFDoDA)      | 307-55-1   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorotridecanoic acid (PFTrDA)     | 72629-94-8 | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorotetradecanoic acid (PFTeDA)   | 376-06-7   | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorobutanoic acid (PFBA)          | 375-22-4   | 0.001  | mg/kg | <0.001          | <0.001                 | 0.00    | No Limit            |
| EB1919840-019        | HH_SS3_0.1_190724         | EP231X: Perfluoropentanoic acid (PFPeA)        | 2706-90-3  | 0.0002 | mg/kg | 0.0002          | <0.0002                | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorohexanoic acid (PFHxA)         | 307-24-4   | 0.0002 | mg/kg | 0.0003          | 0.0003                 | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluoroheptanoic acid (PFHpA)        | 375-85-9   | 0.0002 | mg/kg | 0.0009          | 0.0008                 | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorooctanoic acid (PFOA)          | 335-67-1   | 0.0002 | mg/kg | 0.0009          | 0.0008                 | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorononanoic acid (PFNA)          | 375-95-1   | 0.0002 | mg/kg | 0.0012          | 0.0011                 | 9.84    | No Limit            |
|                      |                           | EP231X: Perfluorodecanoic acid (PFDA)          | 335-76-2   | 0.0002 | mg/kg | 0.0048          | 0.0044                 | 8.26    | 0% - 20%            |
|                      |                           | EP231X: Perfluoroundecanoic acid (PFUnDA)      | 2058-94-8  | 0.0002 | mg/kg | 0.0037          | 0.0035                 | 5.04    | 0% - 50%            |
|                      |                           | EP231X: Perfluorododecanoic acid (PFDoDA)      | 307-55-1   | 0.0002 | mg/kg | 0.0006          | 0.0006                 | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorotridecanoic acid (PFTrDA)     | 72629-94-8 | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorotetradecanoic acid (PFTeDA)   | 376-06-7   | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorobutanoic acid (PFBA)          | 375-22-4   | 0.001  | mg/kg | <0.001          | <0.001                 | 0.00    | No Limit            |
| EP231B: Perfluoroa   | alkyl Carboxylic Acids (Q | C Lot: 2501997)                                |            |        |       |                 |                        |         |                     |
| EB1919840-063        | HH_QC101_190724           | EP231X: Perfluoropentanoic acid (PFPeA)        | 2706-90-3  | 0.0002 | mg/kg | 0.0004          | 0.0005                 | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorohexanoic acid (PFHxA)         | 307-24-4   | 0.0002 | mg/kg | 0.0003          | 0.0003                 | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluoroheptanoic acid (PFHpA)        | 375-85-9   | 0.0002 | mg/kg | 0.0003          | 0.0003                 | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorooctanoic acid (PFOA)          | 335-67-1   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorononanoic acid (PFNA)          | 375-95-1   | 0.0002 | mg/kg | 0.0016          | 0.0017                 | 6.91    | No Limit            |
|                      |                           | EP231X: Perfluorodecanoic acid (PFDA)          | 335-76-2   | 0.0002 | mg/kg | 0.0004          | 0.0004                 | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluoroundecanoic acid (PFUnDA)      | 2058-94-8  | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorododecanoic acid (PFDoDA)      | 307-55-1   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorotridecanoic acid (PFTrDA)     | 72629-94-8 | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |

Page : 4 of 16

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd



| Sub-Matrix: SOIL     |                           |                                              |            | Laboratory Duplicate (DUP) Report |        |                 |                  |         |                     |
|----------------------|---------------------------|----------------------------------------------|------------|-----------------------------------|--------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID          | Method: Compound                             | CAS Number | LOR                               | Unit   | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP231B: Perfluoroa   | alkyl Carboxylic Acids (Q | C Lot: 2501997) - continued                  |            |                                   |        |                 |                  |         |                     |
| EB1919840-063        | HH_QC101_190724           | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7   | 0.0005                            | mg/kg  | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorobutanoic acid (PFBA)        | 375-22-4   | 0.001                             | mg/kg  | <0.001          | <0.001           | 0.00    | No Limit            |
| EB1919842-019        | Anonymous                 | EP231X: Perfluoropentanoic acid (PFPeA)      | 2706-90-3  | 0.0002                            | mg/kg  | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorohexanoic acid (PFHxA)       | 307-24-4   | 0.0002                            | mg/kg  | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluoroheptanoic acid (PFHpA)      | 375-85-9   | 0.0002                            | mg/kg  | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorooctanoic acid (PFOA)        | 335-67-1   | 0.0002                            | mg/kg  | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorononanoic acid (PFNA)        | 375-95-1   | 0.0002                            | mg/kg  | 0.0004          | 0.0004           | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorodecanoic acid (PFDA)        | 335-76-2   | 0.0002                            | mg/kg  | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluoroundecanoic acid (PFUnDA)    | 2058-94-8  | 0.0002                            | mg/kg  | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorododecanoic acid (PFDoDA)    | 307-55-1   | 0.0002                            | mg/kg  | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorotridecanoic acid (PFTrDA)   | 72629-94-8 | 0.0002                            | mg/kg  | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7   | 0.0005                            | mg/kg  | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | EP231X: Perfluorobutanoic acid (PFBA)        | 375-22-4   | 0.001                             | mg/kg  | <0.001          | <0.001           | 0.00    | No Limit            |
| EP231C: Perfluoroa   | lkyl Sulfonamides (QC Lo  | ot: 2501993)                                 |            |                                   |        |                 |                  |         |                     |
| EB1919839-046        | Anonymous                 | EP231X: Perfluorooctane sulfonamide (FOSA)   | 754-91-6   | 0.0002                            | mg/kg  | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                           | EP231X: N-Methyl perfluorooctane             | 2355-31-9  | 0.0002                            | mg/kg  | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                           | sulfonamidoacetic acid (MeFOSAA)             |            |                                   |        |                 |                  |         |                     |
|                      |                           | EP231X: N-Ethyl perfluorooctane              | 2991-50-6  | 0.0002                            | mg/kg  | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                           | sulfonamidoacetic acid (EtFOSAA)             |            |                                   |        |                 |                  |         |                     |
|                      |                           | EP231X: N-Methyl perfluorooctane sulfonamide | 31506-32-8 | 0.0005                            | mg/kg  | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | (MeFOSA)                                     |            |                                   |        |                 |                  |         |                     |
|                      |                           | EP231X: N-Ethyl perfluorooctane sulfonamide  | 4151-50-2  | 0.0005                            | mg/kg  | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | (EtFOSA)                                     |            |                                   |        |                 |                  |         |                     |
|                      |                           | EP231X: N-Methyl perfluorooctane             | 24448-09-7 | 0.0005                            | mg/kg  | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | sulfonamidoethanol (MeFOSE)                  |            |                                   |        |                 |                  |         |                     |
|                      |                           | EP231X: N-Ethyl perfluorooctane              | 1691-99-2  | 0.0005                            | mg/kg  | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | sulfonamidoethanol (EtFOSE)                  |            |                                   |        |                 |                  |         |                     |
| EB1919840-019        | HH_SS3_0.1_190724         | EP231X: Perfluorooctane sulfonamide (FOSA)   | 754-91-6   | 0.0002                            | mg/kg  | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                           | EP231X: N-Methyl perfluorooctane             | 2355-31-9  | 0.0002                            | mg/kg  | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                           | sulfonamidoacetic acid (MeFOSAA)             |            |                                   |        |                 |                  |         |                     |
|                      |                           | EP231X: N-Ethyl perfluorooctane              | 2991-50-6  | 0.0002                            | mg/kg  | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                           | sulfonamidoacetic acid (EtFOSAA)             |            |                                   |        |                 |                  |         |                     |
|                      |                           | EP231X: N-Methyl perfluorooctane sulfonamide | 31506-32-8 | 0.0005                            | mg/kg  | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | (MeFOSA)                                     | 4454 50.0  | 0.000=                            |        | 0.0005          | 0.0005           | 0.00    | N. 1                |
|                      |                           | EP231X: N-Ethyl perfluorooctane sulfonamide  | 4151-50-2  | 0.0005                            | mg/kg  | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | (EtFOSA)                                     | 24440.00.7 | 0.0005                            | me.//  | <0.0005         | <0.0005          | 0.00    | No ! ::4            |
|                      |                           | EP231X: N-Methyl perfluorooctane             | 24448-09-7 | 0.0005                            | mg/kg  | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | sulfonamidoethanol (MeFOSE)                  | 1601.00.0  | 0.0005                            | ma/lea | <0.0005         | <0.000E          | 0.00    | No Limit            |
|                      |                           | EP231X: N-Ethyl perfluorooctane              | 1691-99-2  | 0.0005                            | mg/kg  | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | sulfonamidoethanol (EtFOSE)                  |            |                                   |        |                 |                  |         |                     |
| EP231C: Perfluoroa   | Ikyl Sulfonamides (QC Lo  | ot: 2501997)                                 |            |                                   |        |                 |                  |         |                     |
|                      |                           |                                              |            |                                   |        |                 |                  |         |                     |

Page : 5 of 16

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd



| ub-Matrix: SOIL      |                           |                                                      |             |        |       |                 |                  |         |                     |
|----------------------|---------------------------|------------------------------------------------------|-------------|--------|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID          | Method: Compound                                     | CAS Number  | LOR    | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP231C: Perfluoroa   | ılkyl Sulfonamides (QC Lo | t: 2501997) - continued                              |             |        |       |                 |                  |         |                     |
| EB1919840-063        | HH_QC101_190724           | EP231X: Perfluorooctane sulfonamide (FOSA)           | 754-91-6    | 0.0002 | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                           | EP231X: N-Methyl perfluorooctane                     | 2355-31-9   | 0.0002 | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                           | sulfonamidoacetic acid (MeFOSAA)                     |             |        |       |                 |                  |         |                     |
|                      |                           | EP231X: N-Ethyl perfluorooctane                      | 2991-50-6   | 0.0002 | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                           | sulfonamidoacetic acid (EtFOSAA)                     |             |        |       |                 |                  |         |                     |
|                      |                           | EP231X: N-Methyl perfluorooctane sulfonamide         | 31506-32-8  | 0.0005 | mg/kg | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | (MeFOSA)                                             |             |        |       |                 |                  |         |                     |
|                      |                           | EP231X: N-Ethyl perfluorooctane sulfonamide          | 4151-50-2   | 0.0005 | mg/kg | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | (EtFOSA)                                             |             |        |       |                 |                  |         |                     |
|                      |                           | EP231X: N-Methyl perfluorooctane                     | 24448-09-7  | 0.0005 | mg/kg | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | sulfonamidoethanol (MeFOSE)                          |             |        |       |                 |                  |         |                     |
|                      |                           | EP231X: N-Ethyl perfluorooctane                      | 1691-99-2   | 0.0005 | mg/kg | <0.0005         | <0.0005          | 0.00    | No Limit            |
| ED4040040 040        | A                         | sulfonamidoethanol (EtFOSE)                          | 754.04.0    | 0.0000 |       | -0.000          | 10,0000          | 0.00    | NI- I hadi          |
| EB1919842-019        | Anonymous                 | EP231X: Perfluorooctane sulfonamide (FOSA)           | 754-91-6    | 0.0002 | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                           | EP231X: N-Methyl perfluorooctane                     | 2355-31-9   | 0.0002 | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                           | sulfonamidoacetic acid (MeFOSAA)                     | 2004 50 0   | 0.0000 |       | 40,0000         | 40,0000          | 0.00    | NI= Lineit          |
|                      |                           | EP231X: N-Ethyl perfluorooctane                      | 2991-50-6   | 0.0002 | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                           | sulfonamidoacetic acid (EtFOSAA)                     | 31506-32-8  | 0.0005 | malka | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | EP231X: N-Methyl perfluorooctane sulfonamide         | 31300-32-6  | 0.0005 | mg/kg | <0.0005         | <0.0005          | 0.00    | INO LITTIL          |
|                      |                           | (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamide | 4151-50-2   | 0.0005 | mg/kg | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | (EtFOSA)                                             | 4131-30-2   | 0.0003 | mg/kg | 40.0005         | 40.0003          | 0.00    | NO LITTLE           |
|                      |                           | EP231X: N-Methyl perfluorooctane                     | 24448-09-7  | 0.0005 | mg/kg | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | sulfonamidoethanol (MeFOSE)                          | 21110 00 1  | 0.000  | 99    | 0.000           | 0.0000           | 0.00    |                     |
|                      |                           | EP231X: N-Ethyl perfluorooctane                      | 1691-99-2   | 0.0005 | mg/kg | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | sulfonamidoethanol (EtFOSE)                          |             |        | 3 3   |                 |                  |         |                     |
| FP231D: (n:2) Fluo   | rotelomer Sulfonic Acids  | , ,                                                  |             |        |       |                 |                  |         |                     |
| EB1919839-046        | Anonymous                 | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2         | 757124-72-4 | 0.0005 | mg/kg | <0.0005         | <0.0005          | 0.00    | No Limit            |
| LB 10 10000 040      | 7 thonymous               | FTS)                                                 | 707124724   | 0.0000 | mg/kg | 40.0000         | 10.0000          | 0.00    | NO Ellilli          |
|                      |                           | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2         | 27619-97-2  | 0.0005 | mg/kg | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | FTS)                                                 | 27010 07 2  | 0.0000 | mg/kg | 10.0000         | 10.0000          | 0.00    | TWO Elitting        |
|                      |                           | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2         | 39108-34-4  | 0.0005 | mg/kg | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | FTS)                                                 |             |        |       |                 |                  |         |                     |
|                      |                           | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2       | 120226-60-0 | 0.0005 | mg/kg | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | FTS)                                                 |             |        | 3 3   |                 |                  |         |                     |
| EB1919840-019        | HH_SS3_0.1_190724         | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2         | 757124-72-4 | 0.0005 | mg/kg | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | FTS)                                                 |             |        | 5 5   |                 |                  |         |                     |
|                      |                           | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2         | 27619-97-2  | 0.0005 | mg/kg | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | FTS)                                                 |             |        |       |                 |                  |         |                     |
|                      |                           | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2         | 39108-34-4  | 0.0005 | mg/kg | <0.0005         | <0.0005          | 0.00    | No Limit            |
|                      |                           | FTS)                                                 |             |        |       |                 |                  |         |                     |

Page : 6 of 16

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd



| Sub-Matrix: SOIL     |                             |                                                     |             |        |       | Laboratory      | Duplicate (DUP) Report | t       |                     |
|----------------------|-----------------------------|-----------------------------------------------------|-------------|--------|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID            | Method: Compound                                    | CAS Number  | LOR    | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231D: (n:2) Fluor  | otelomer Sulfonic Acids (Q  | C Lot: 2501993) - continued                         |             |        |       |                 |                        |         |                     |
| EB1919840-019        | HH_SS3_0.1_190724           | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.0005 | mg/kg | 0.0029          | 0.0027                 | 7.53    | No Limit            |
| EP231D: (n:2) Fluor  | otelomer Sulfonic Acids (Q  | C Lot: 2501997)                                     |             |        |       |                 |                        |         |                     |
| EB1919840-063        | HH_QC101_190724             | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                             | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                             | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                             | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
| EB1919842-019        | Anonymous                   | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                             | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                             | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                             | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
| Sub-Matrix: WATER    |                             |                                                     |             |        |       | Laboratory I    | Duplicate (DUP) Report | t       |                     |
| Laboratory sample ID | Client sample ID            | Method: Compound                                    | CAS Number  | LOR    | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231A: Perfluoroal  | kyl Sulfonic Acids (QC Lot: | 2501826)                                            |             |        |       |                 |                        |         |                     |
| EB1919838-042        | Anonymous                   | EP231X-LL: Perfluorobutane sulfonic acid (PFBS)     | 375-73-5    | 0.002  | μg/L  | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)   | 2706-91-4   | 0.002  | μg/L  | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)    | 355-46-4    | 0.002  | μg/L  | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)   | 375-92-8    | 0.002  | μg/L  | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluorooctane sulfonic acid (PFOS)     | 1763-23-1   | 0.002  | μg/L  | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluorodecane sulfonic acid (PFDS)     | 335-77-3    | 0.002  | μg/L  | <0.002          | <0.002                 | 0.00    | No Limit            |
| EB1919842-038        | Anonymous                   | EP231X-LL: Perfluorobutane sulfonic acid (PFBS)     | 375-73-5    | 0.002  | μg/L  | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)   | 2706-91-4   | 0.002  | μg/L  | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)    | 355-46-4    | 0.002  | μg/L  | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)   | 375-92-8    | 0.002  | μg/L  | <0.002          | <0.002                 | 0.00    | No Limit            |

Page : 7 of 16

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd



| Sub-Matrix: WATER    |                          |                                                                      |            |       |      | Laboratory Duplicate (DUP) Report |                  |         |                     |
|----------------------|--------------------------|----------------------------------------------------------------------|------------|-------|------|-----------------------------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID         | Method: Compound                                                     | CAS Number | LOR   | Unit | Original Result                   | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP231A: Perfluoroal  | kyl Sulfonic Acids (QC L | ot: 2501826) - continued                                             |            |       |      |                                   |                  |         |                     |
| EB1919842-038        | Anonymous                | EP231X-LL: Perfluorooctane sulfonic acid (PFOS)                      | 1763-23-1  | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: Perfluorodecane sulfonic acid (PFDS)                      | 335-77-3   | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
| EP231B: Perfluoroa   | lkyl Carboxylic Acids (Q | C Lot: 2501826)                                                      |            |       |      |                                   |                  |         |                     |
| EB1919838-042        | Anonymous                | EP231X-LL: Perfluoropentanoic acid (PFPeA)                           | 2706-90-3  | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: Perfluorohexanoic acid (PFHxA)                            | 307-24-4   | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: Perfluoroheptanoic acid (PFHpA)                           | 375-85-9   | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: Perfluorooctanoic acid (PFOA)                             | 335-67-1   | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: Perfluorononanoic acid (PFNA)                             | 375-95-1   | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: Perfluorodecanoic acid (PFDA)                             | 335-76-2   | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: Perfluoroundecanoic acid (PFUnDA)                         | 2058-94-8  | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: Perfluorododecanoic acid (PFDoDA)                         | 307-55-1   | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8 | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7   | 0.005 | μg/L | <0.005                            | <0.005           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: Perfluorobutanoic acid (PFBA)                             | 375-22-4   | 0.01  | μg/L | <0.01                             | <0.01            | 0.00    | No Limit            |
| EB1919842-038        | Anonymous                | EP231X-LL: Perfluoropentanoic acid (PFPeA)                           | 2706-90-3  | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: Perfluorohexanoic acid (PFHxA)                            | 307-24-4   | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: Perfluoroheptanoic acid (PFHpA)                           | 375-85-9   | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: Perfluorooctanoic acid (PFOA)                             | 335-67-1   | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: Perfluorononanoic acid (PFNA)                             | 375-95-1   | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: Perfluorodecanoic acid (PFDA)                             | 335-76-2   | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: Perfluoroundecanoic acid (PFUnDA)                         | 2058-94-8  | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: Perfluorododecanoic acid (PFDoDA)                         | 307-55-1   | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8 | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7   | 0.005 | μg/L | <0.005                            | <0.005           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: Perfluorobutanoic acid (PFBA)                             | 375-22-4   | 0.01  | μg/L | <0.01                             | <0.01            | 0.00    | No Limit            |
| EP231C: Perfluoroal  | kyl Sulfonamides (QC Lo  | ot: 2501826)                                                         |            |       |      |                                   |                  |         |                     |
| EB1919838-042        | Anonymous                | EP231X-LL: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6   | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9  | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6  | 0.002 | μg/L | <0.002                            | <0.002           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8 | 0.005 | μg/L | <0.005                            | <0.005           | 0.00    | No Limit            |
|                      |                          | EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2  | 0.005 | μg/L | <0.005                            | <0.005           | 0.00    | No Limit            |

Page : 8 of 16

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd



| Sub-Matrix: WATER    |                             |                                                                      |                        |       |      | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|-----------------------------|----------------------------------------------------------------------|------------------------|-------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID            | Method: Compound                                                     | CAS Number             | LOR   | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231C: Perfluoroal  | kyl Sulfonamides (QC L      | ot: 2501826) - continued                                             |                        |       |      |                 |                        |         |                     |
| EB1919838-042        | Anonymous                   | EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7             | 0.005 | µg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2              | 0.005 | µg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
| EB1919842-038        | Anonymous                   | EP231X-LL: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6               | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9              | 0.002 | µg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6              | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8             | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2              | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7             | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2              | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
| EP231D: (n:2) Fluor  | otelomer Sulfonic Acids     | (QC Lot: 2501826)                                                    |                        |       |      |                 |                        |         |                     |
| EB1919838-042        | Anonymous                   | EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | 757124-72-4            | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                 | 27619-97-2             | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                 | 39108-34-4             | 0.005 | µg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)               | 120226-60-0            | 0.005 | µg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
| EB1919842-038        | Anonymous                   | EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | 757124-72-4            | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                 | 27619-97-2             | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                 | 39108-34-4             | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)               | 120226-60-0            | 0.005 | µg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
| EP231P: PFAS Sum     | s (QC Lot: 250182 <u>6)</u> |                                                                      |                        |       |      |                 |                        |         |                     |
| EB1919838-042        | Anonymous                   | EP231X-LL: Sum of PFAS                                               |                        | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Sum of PFHxS and PFOS                                     | 355-46-4/1763-<br>23-1 | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                             | EP231X-LL: Sum of PFAS (WA DER List)                                 |                        | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
| EB1919842-038        | Anonymous                   | EP231X-LL: Sum of PFAS                                               |                        | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |

Page : 9 of 16

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd



| Sub-Matrix: WATER    |                            |                                      |                |       |      | Laboratory D    | Ouplicate (DUP) Report |         |                     |
|----------------------|----------------------------|--------------------------------------|----------------|-------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID           | Method: Compound                     | CAS Number     | LOR   | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231P: PFAS Sums    | (QC Lot: 2501826) - contin | ued                                  |                |       |      |                 |                        |         |                     |
| EB1919842-038        | Anonymous                  | EP231X-LL: Sum of PFHxS and PFOS     | 355-46-4/1763- | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                            |                                      | 23-1           |       |      |                 |                        |         |                     |
|                      |                            | EP231X-LL: Sum of PFAS (WA DER List) |                | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |

Page : 10 of 16

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd

Project : 60609758\_HH



### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: <b>SOIL</b>                           |            |        |       | Method Blank (MB) |               | Laboratory Control Spike (LCS | S) Report |            |
|---------------------------------------------------|------------|--------|-------|-------------------|---------------|-------------------------------|-----------|------------|
|                                                   |            |        |       | Report            | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound                                  | CAS Number | LOR    | Unit  | Result            | Concentration | LCS                           | Low       | High       |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 250 | 1993)      |        |       |                   |               |                               |           |            |
| EP231X: Perfluorobutane sulfonic acid (PFBS)      | 375-73-5   | 0.0002 | mg/kg | <0.0002           | 0.0011 mg/kg  | 96.8                          | 57        | 121        |
| EP231X: Perfluoropentane sulfonic acid (PFPeS)    | 2706-91-4  | 0.0002 | mg/kg | <0.0002           | 0.00117 mg/kg | 99.1                          | 55        | 125        |
| EP231X: Perfluorohexane sulfonic acid (PFHxS)     | 355-46-4   | 0.0002 | mg/kg | <0.0002           | 0.00118 mg/kg | 99.2                          | 52        | 126        |
| EP231X: Perfluoroheptane sulfonic acid (PFHpS)    | 375-92-8   | 0.0002 | mg/kg | <0.0002           | 0.00119 mg/kg | 92.8                          | 54        | 123        |
| EP231X: Perfluorooctane sulfonic acid (PFOS)      | 1763-23-1  | 0.0002 | mg/kg | <0.0002           | 0.00116 mg/kg | 87.9                          | 55        | 127        |
| EP231X: Perfluorodecane sulfonic acid (PFDS)      | 335-77-3   | 0.0002 | mg/kg | <0.0002           | 0.0012 mg/kg  | 100                           | 54        | 125        |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 250 | 1997)      |        |       |                   |               |                               |           |            |
| EP231X: Perfluorobutane sulfonic acid (PFBS)      | 375-73-5   | 0.0002 | mg/kg | <0.0002           | 0.0011 mg/kg  | 79.1                          | 57        | 121        |
| EP231X: Perfluoropentane sulfonic acid (PFPeS)    | 2706-91-4  | 0.0002 | mg/kg | <0.0002           | 0.00117 mg/kg | 81.2                          | 55        | 125        |
| EP231X: Perfluorohexane sulfonic acid (PFHxS)     | 355-46-4   | 0.0002 | mg/kg | <0.0002           | 0.00118 mg/kg | 79.7                          | 52        | 126        |
| EP231X: Perfluoroheptane sulfonic acid (PFHpS)    | 375-92-8   | 0.0002 | mg/kg | <0.0002           | 0.00119 mg/kg | 75.2                          | 54        | 123        |
| EP231X: Perfluorooctane sulfonic acid (PFOS)      | 1763-23-1  | 0.0002 | mg/kg | <0.0002           | 0.00116 mg/kg | 70.7                          | 55        | 127        |
| EP231X: Perfluorodecane sulfonic acid (PFDS)      | 335-77-3   | 0.0002 | mg/kg | <0.0002           | 0.0012 mg/kg  | 103                           | 54        | 125        |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 2 | 2501993)   |        |       |                   |               |                               |           |            |
| EP231X: Perfluorobutanoic acid (PFBA)             | 375-22-4   | 0.001  | mg/kg | <0.001            | 0.00625 mg/kg | 67.0                          | 52        | 128        |
| EP231X: Perfluoropentanoic acid (PFPeA)           | 2706-90-3  | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 85.2                          | 54        | 129        |
| EP231X: Perfluorohexanoic acid (PFHxA)            | 307-24-4   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 91.2                          | 58        | 127        |
| EP231X: Perfluoroheptanoic acid (PFHpA)           | 375-85-9   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 88.0                          | 57        | 128        |
| EP231X: Perfluorooctanoic acid (PFOA)             | 335-67-1   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 91.6                          | 60        | 134        |
| EP231X: Perfluorononanoic acid (PFNA)             | 375-95-1   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 81.2                          | 63        | 130        |
| EP231X: Perfluorodecanoic acid (PFDA)             | 335-76-2   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 83.6                          | 55        | 130        |
| EP231X: Perfluoroundecanoic acid (PFUnDA)         | 2058-94-8  | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 87.2                          | 62        | 130        |
| EP231X: Perfluorododecanoic acid (PFDoDA)         | 307-55-1   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 84.8                          | 53        | 134        |
| EP231X: Perfluorotridecanoic acid (PFTrDA)        | 72629-94-8 | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 72.4                          | 49        | 129        |
| EP231X: Perfluorotetradecanoic acid (PFTeDA)      | 376-06-7   | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg | 81.4                          | 59        | 129        |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 2 | 2501997)   |        |       |                   |               |                               |           |            |
| EP231X: Perfluorobutanoic acid (PFBA)             | 375-22-4   | 0.001  | mg/kg | <0.001            | 0.00625 mg/kg | 59.4                          | 52        | 128        |
| EP231X: Perfluoropentanoic acid (PFPeA)           | 2706-90-3  | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 80.4                          | 54        | 129        |
| EP231X: Perfluorohexanoic acid (PFHxA)            | 307-24-4   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 79.6                          | 58        | 127        |
| EP231X: Perfluoroheptanoic acid (PFHpA)           | 375-85-9   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 76.4                          | 57        | 128        |
| EP231X: Perfluorooctanoic acid (PFOA)             | 335-67-1   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 74.4                          | 60        | 134        |
| EP231X: Perfluorononanoic acid (PFNA)             | 375-95-1   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 72.0                          | 63        | 130        |
| EP231X: Perfluorodecanoic acid (PFDA)             | 335-76-2   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 72.0                          | 55        | 130        |
| EP231X: Perfluoroundecanoic acid (PFUnDA)         | 2058-94-8  | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 71.2                          | 62        | 130        |

Page : 11 of 16

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd



| Sub-Matrix: SOIL                                                  |                   |        |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                               |           |            |  |
|-------------------------------------------------------------------|-------------------|--------|-------|-------------------|---------------------------------------|-------------------------------|-----------|------------|--|
|                                                                   |                   |        |       | Report            | Spike                                 | Spike Recovery (%)            | Recovery  | Limits (%) |  |
| Method: Compound                                                  | CAS Number        | LOR    | Unit  | Result            | Concentration                         | LCS                           | Low       | High       |  |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 2501              | 1997) - continued |        |       |                   |                                       |                               |           |            |  |
| EP231X: Perfluorododecanoic acid (PFDoDA)                         | 307-55-1          | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg                         | 69.2                          | 53        | 134        |  |
| EP231X: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8        | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg                         | 72.0                          | 49        | 129        |  |
| EP231X: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7          | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg                         | 68.4                          | 59        | 129        |  |
| EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2501993               | )                 |        |       |                   |                                       |                               |           |            |  |
| EP231X: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6          | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg                         | 85.6                          | 52        | 132        |  |
| EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8        | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg                         | 86.5                          | 65        | 126        |  |
| EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2         | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg                         | 84.1                          | 64        | 126        |  |
| EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7        | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg                         | 70.4                          | 63        | 124        |  |
| EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2         | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg                         | 80.9                          | 58        | 125        |  |
| EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9         | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg                         | 86.0                          | 61        | 130        |  |
| EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6         | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg                         | 82.4                          | 55        | 130        |  |
| EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2501997               | )                 |        |       |                   |                                       |                               |           |            |  |
| EP231X: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6          | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg                         | 68.8                          | 52        | 132        |  |
| EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8        | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg                         | 68.8                          | 65        | 126        |  |
| EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2         | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg                         | 93.8                          | 64        | 126        |  |
| EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7        | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg                         | 68.4                          | 63        | 124        |  |
| EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2         | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg                         | 89.9                          | 58        | 125        |  |
| EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9         | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg                         | 72.0                          | 61        | 130        |  |
| EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6         | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg                         | 76.4                          | 55        | 130        |  |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2              | 501993)           |        |       |                   |                                       |                               |           |            |  |
| P231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                  | 757124-72-4       | 0.0005 | mg/kg | <0.0005           | 0.00116 mg/kg                         | 95.7                          | 54        | 130        |  |
| EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                 | 27619-97-2        | 0.0005 | mg/kg | <0.0005           | 0.00118 mg/kg                         | 92.8                          | 61        | 130        |  |
| EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                 | 39108-34-4        | 0.0005 | mg/kg | <0.0005           | 0.00119 mg/kg                         | 100                           | 62        | 130        |  |
| EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)               | 120226-60-0       | 0.0005 | mg/kg | <0.0005           | 0.0012 mg/kg                          | 118                           | 60        | 130        |  |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2              | 501997)           |        |       |                   |                                       |                               |           |            |  |
| EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | 757124-72-4       | 0.0005 | mg/kg | <0.0005           | 0.00116 mg/kg                         | 88.4                          | 54        | 130        |  |
| EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                 | 27619-97-2        | 0.0005 | mg/kg | <0.0005           | 0.00118 mg/kg                         | 77.1                          | 61        | 130        |  |
| EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                 | 39108-34-4        | 0.0005 | mg/kg | <0.0005           | 0.00119 mg/kg                         | 77.3                          | 62        | 130        |  |
| EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)               | 120226-60-0       | 0.0005 | mg/kg | <0.0005           | 0.0012 mg/kg                          | 102                           | 60        | 130        |  |
| · · · · · · · · · · · · · · · · · · ·                             |                   |        |       | Method Blank (MB) |                                       | Laboratory Control Spike (LCS | S) Report |            |  |
| Sub-Matrix: WATER                                                 |                   |        |       | Report            | Spike                                 | Spike Recovery (%)            |           | Limits (%) |  |

: 12 of 16 : EB1919840 Amendment 1 Work Order : AECOM Australia Pty Ltd Client



| Sub-Matrix: WATER                                                    |             | Method Blank (MB) | Laboratory Control Spike (LCS) Report |        |               |                    |          |            |
|----------------------------------------------------------------------|-------------|-------------------|---------------------------------------|--------|---------------|--------------------|----------|------------|
|                                                                      |             |                   |                                       | Report | Spike         | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                                                     | CAS Number  | LOR               | Unit                                  | Result | Concentration | LCS                | Low      | High       |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 2501820                | 6)          |                   |                                       |        |               |                    |          |            |
| EP231X-LL: Perfluorobutane sulfonic acid (PFBS)                      | 375-73-5    | 0.002             | μg/L                                  | <0.002 | 0.0442 μg/L   | 91.2               | 50       | 130        |
| EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)                    | 2706-91-4   | 0.002             | μg/L                                  | <0.002 | 0.0469 µg/L   | 79.7               | 50       | 130        |
| EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)                     | 355-46-4    | 0.002             | μg/L                                  | <0.002 | 0.0473 μg/L   | 82.9               | 50       | 130        |
| EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)                    | 375-92-8    | 0.002             | μg/L                                  | <0.002 | 0.0476 µg/L   | 82.1               | 50       | 130        |
| EP231X-LL: Perfluorooctane sulfonic acid (PFOS)                      | 1763-23-1   | 0.002             | μg/L                                  | <0.002 | 0.0464 μg/L   | 58.2               | 50       | 130        |
| EP231X-LL: Perfluorodecane sulfonic acid (PFDS)                      | 335-77-3    | 0.002             | μg/L                                  | <0.002 | 0.0482 μg/L   | 61.8               | 40       | 130        |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 2501                 | 826)        |                   |                                       |        |               |                    |          |            |
| EP231X-LL: Perfluorobutanoic acid (PFBA)                             | 375-22-4    | 0.01              | μg/L                                  | <0.01  | 0.25 μg/L     | 76.3               | 50       | 130        |
| EP231X-LL: Perfluoropentanoic acid (PFPeA)                           | 2706-90-3   | 0.002             | μg/L                                  | <0.002 | 0.05 μg/L     | 81.0               | 50       | 130        |
| EP231X-LL: Perfluorohexanoic acid (PFHxA)                            | 307-24-4    | 0.002             | μg/L                                  | <0.002 | 0.05 μg/L     | 87.0               | 50       | 130        |
| EP231X-LL: Perfluoroheptanoic acid (PFHpA)                           | 375-85-9    | 0.002             | μg/L                                  | <0.002 | 0.05 μg/L     | 84.6               | 50       | 130        |
| EP231X-LL: Perfluorooctanoic acid (PFOA)                             | 335-67-1    | 0.002             | μg/L                                  | <0.002 | 0.05 μg/L     | 82.2               | 50       | 130        |
| EP231X-LL: Perfluorononanoic acid (PFNA)                             | 375-95-1    | 0.002             | μg/L                                  | <0.002 | 0.05 μg/L     | 74.6               | 50       | 130        |
| EP231X-LL: Perfluorodecanoic acid (PFDA)                             | 335-76-2    | 0.002             | μg/L                                  | <0.002 | 0.05 μg/L     | 70.0               | 50       | 130        |
| EP231X-LL: Perfluoroundecanoic acid (PFUnDA)                         | 2058-94-8   | 0.002             | μg/L                                  | <0.002 | 0.05 μg/L     | 60.6               | 40       | 130        |
| EP231X-LL: Perfluorododecanoic acid (PFDoDA)                         | 307-55-1    | 0.002             | μg/L                                  | <0.002 | 0.05 μg/L     | 60.6               | 40       | 130        |
| EP231X-LL: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8  | 0.002             | μg/L                                  | <0.002 | 0.05 μg/L     | 68.4               | 40       | 130        |
| EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7    | 0.005             | μg/L                                  | <0.005 | 0.125 μg/L    | 74.6               | 40       | 130        |
| EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2501826                  | )           |                   |                                       |        |               |                    |          |            |
| EP231X-LL: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6    | 0.002             | μg/L                                  | <0.002 | 0.05 μg/L     | 76.2               | 40       | 130        |
| EP231X-LL: N-Methyl perfluorooctane sulfonamide                      | 31506-32-8  | 0.005             | μg/L                                  | <0.005 | 0.125 μg/L    | 68.6               | 40       | 130        |
| (MeFOSA)                                                             |             |                   |                                       |        |               |                    |          |            |
| EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2   | 0.005             | μg/L                                  | <0.005 | 0.125 μg/L    | 61.5               | 40       | 130        |
| EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol               | 24448-09-7  | 0.005             | μg/L                                  | <0.005 | 0.125 μg/L    | 51.8               | 50       | 130        |
| (MeFOSE)                                                             |             |                   |                                       |        |               |                    |          |            |
| EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2   | 0.005             | μg/L                                  | <0.005 | 0.125 μg/L    | 62.4               | 40       | 130        |
| EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9   | 0.002             | μg/L                                  | <0.002 | 0.05 μg/L     | 62.6               | 50       | 130        |
| EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6   | 0.002             | μg/L                                  | <0.002 | 0.05 μg/L     | 57.0               | 40       | 130        |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 29                | 501826)     |                   |                                       |        |               |                    |          |            |
| EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | 757124-72-4 | 0.005             | μg/L                                  | <0.005 | 0.0467 μg/L   | 91.6               | 50       | 130        |
| EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                 | 27619-97-2  | 0.005             | μg/L                                  | <0.005 | 0.0474 µg/L   | 85.2               | 50       | 130        |
| EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                 | 39108-34-4  | 0.005             | μg/L                                  | <0.005 | 0.0479 µg/L   | 72.2               | 50       | 130        |
| EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)               | 120226-60-0 | 0.005             | μg/L                                  | <0.005 | 0.0482 µg/L   | 54.1               | 50       | 130        |
| EP231P: PFAS Sums (QCLot: 2501826)                                   |             |                   |                                       |        |               |                    |          |            |
| EP231X-LL: Sum of PFAS                                               |             | 0.002             | μg/L                                  | <0.002 | <del></del>   |                    |          |            |
| El 2017, EL. Odill Ol 1170                                           |             |                   | r-3' =                                |        |               |                    |          |            |

Page : 13 of 16

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd

Project : 60609758\_HH



| Sub-Matrix: WATER                              | Compound CAS Number LOR P: PFAS Sums (QCLot: 2501826) - continued |       |      |        | Laboratory Control Spike (LCS) Report |                    |          |            |  |
|------------------------------------------------|-------------------------------------------------------------------|-------|------|--------|---------------------------------------|--------------------|----------|------------|--|
|                                                |                                                                   |       |      | Report | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |
| Method: Compound                               | CAS Number                                                        | LOR   | Unit | Result | Concentration                         | LCS                | Low      | High       |  |
| EP231P: PFAS Sums (QCLot: 2501826) - continued |                                                                   |       |      |        |                                       |                    |          |            |  |
| EP231X-LL: Sum of PFHxS and PFOS               | 355-46-4/17                                                       | 0.002 | μg/L | <0.002 |                                       |                    |          |            |  |
|                                                | 63-23-1                                                           |       |      |        |                                       |                    |          |            |  |
| EP231X-LL: Sum of PFAS (WA DER List)           |                                                                   | 0.002 | μg/L | <0.002 |                                       |                    |          |            |  |

### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: SOIL    |                                          |                                                |            | Matrix Spike (MS) Report |                     |            |            |
|---------------------|------------------------------------------|------------------------------------------------|------------|--------------------------|---------------------|------------|------------|
|                     |                                          |                                                |            | Spike                    | SpikeRecovery(%)    | Recovery L | .imits (%) |
| aboratory sample ID | Client sample ID                         | Method: Compound                               | CAS Number | Concentration            | MS                  | Low        | High       |
| P231A: Perfluoro    | palkyl Sulfonic Acids (QCLot: 2501993)   |                                                |            |                          |                     |            |            |
| EB1919839-050       | Anonymous                                | EP231X: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5   | 0.00125 mg/kg            | 83.6                | 57         | 121        |
|                     |                                          | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4  | 0.00125 mg/kg            | 88.8                | 55         | 125        |
|                     |                                          | EP231X: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4   | 0.00125 mg/kg            | 95.2                | 52         | 126        |
|                     |                                          | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8   | 0.00125 mg/kg            | 91.2                | 54         | 123        |
|                     |                                          | EP231X: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1  | 0.00125 mg/kg            | # Not<br>Determined | 55         | 127        |
|                     |                                          | EP231X: Perfluorodecane sulfonic acid (PFDS)   | 335-77-3   | 0.00125 mg/kg            | 92.8                | 54         | 125        |
| P231A: Perfluoro    | palkyl Sulfonic Acids (QCLot: 2501997)   |                                                |            |                          |                     |            |            |
| EB1919840-060       | HH_QC100_190724                          | EP231X: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5   | 0.00125 mg/kg            | 65.6                | 57         | 121        |
|                     |                                          | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4  | 0.00125 mg/kg            | 71.2                | 55         | 125        |
|                     |                                          | EP231X: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4   | 0.00125 mg/kg            | 73.6                | 52         | 126        |
|                     |                                          | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8   | 0.00125 mg/kg            | 60.4                | 54         | 123        |
|                     |                                          | EP231X: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1  | 0.00125 mg/kg            | # Not               | 55         | 127        |
|                     |                                          |                                                |            |                          | Determined          |            |            |
|                     |                                          | EP231X: Perfluorodecane sulfonic acid (PFDS)   | 335-77-3   | 0.00125 mg/kg            | 64.8                | 54         | 125        |
| P231B: Perfluor     | oalkyl Carboxylic Acids (QCLot: 2501993) |                                                |            |                          |                     |            |            |
| EB1919839-050       | Anonymous                                | EP231X: Perfluorobutanoic acid (PFBA)          | 375-22-4   | 0.00625 mg/kg            | 72.3                | 52         | 128        |
|                     |                                          | EP231X: Perfluoropentanoic acid (PFPeA)        | 2706-90-3  | 0.00125 mg/kg            | 103                 | 54         | 129        |
|                     |                                          | EP231X: Perfluorohexanoic acid (PFHxA)         | 307-24-4   | 0.00125 mg/kg            | 103                 | 58         | 127        |
|                     |                                          | EP231X: Perfluoroheptanoic acid (PFHpA)        | 375-85-9   | 0.00125 mg/kg            | 97.6                | 57         | 128        |
|                     |                                          | EP231X: Perfluorooctanoic acid (PFOA)          | 335-67-1   | 0.00125 mg/kg            | 100                 | 60         | 134        |
|                     |                                          | EP231X: Perfluorononanoic acid (PFNA)          | 375-95-1   | 0.00125 mg/kg            | 86.8                | 63         | 130        |
|                     |                                          | EP231X: Perfluorodecanoic acid (PFDA)          | 335-76-2   | 0.00125 mg/kg            | 96.8                | 55         | 130        |
|                     |                                          | EP231X: Perfluoroundecanoic acid (PFUnDA)      | 2058-94-8  | 0.00125 mg/kg            | 91.2                | 62         | 130        |
|                     |                                          | EP231X: Perfluorododecanoic acid (PFDoDA)      | 307-55-1   | 0.00125 mg/kg            | 87.2                | 53         | 134        |
|                     |                                          | EP231X: Perfluorotridecanoic acid (PFTrDA)     | 72629-94-8 | 0.00125 mg/kg            | 73.6                | 49         | 129        |
|                     |                                          | EP231X: Perfluorotetradecanoic acid (PFTeDA)   | 376-06-7   | 0.00312 mg/kg            | 80.9                | 59         | 129        |

Page : 14 of 16

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd



| ub-Matrix: SOIL     |                                            |                                                      |             | Ma            | atrix Spike (MS) Report |            |            |
|---------------------|--------------------------------------------|------------------------------------------------------|-------------|---------------|-------------------------|------------|------------|
|                     |                                            |                                                      |             | Spike         | SpikeRecovery(%)        | Recovery L | .imits (%) |
| aboratory sample ID | Client sample ID                           | Method: Compound                                     | CAS Number  | Concentration | MS                      | Low        | High       |
| P231B: Perfluoro    | palkyl Carboxylic Acids (QCLot: 2501997)   |                                                      |             |               |                         |            |            |
| EB1919840-060       | HH_QC100_190724                            | EP231X: Perfluorobutanoic acid (PFBA)                | 375-22-4    | 0.00625 mg/kg | 57.9                    | 52         | 128        |
|                     |                                            | EP231X: Perfluoropentanoic acid (PFPeA)              | 2706-90-3   | 0.00125 mg/kg | 81.2                    | 54         | 129        |
|                     |                                            | EP231X: Perfluorohexanoic acid (PFHxA)               | 307-24-4    | 0.00125 mg/kg | 79.6                    | 58         | 127        |
|                     |                                            | EP231X: Perfluoroheptanoic acid (PFHpA)              | 375-85-9    | 0.00125 mg/kg | 84.8                    | 57         | 128        |
|                     |                                            | EP231X: Perfluorooctanoic acid (PFOA)                | 335-67-1    | 0.00125 mg/kg | 73.2                    | 60         | 134        |
|                     |                                            | EP231X: Perfluorononanoic acid (PFNA)                | 375-95-1    | 0.00125 mg/kg | 66.0                    | 63         | 130        |
|                     |                                            | EP231X: Perfluorodecanoic acid (PFDA)                | 335-76-2    | 0.00125 mg/kg | 72.0                    | 55         | 130        |
|                     |                                            | EP231X: Perfluoroundecanoic acid (PFUnDA)            | 2058-94-8   | 0.00125 mg/kg | 64.4                    | 62         | 130        |
|                     |                                            | EP231X: Perfluorododecanoic acid (PFDoDA)            | 307-55-1    | 0.00125 mg/kg | 56.8                    | 53         | 134        |
|                     |                                            | EP231X: Perfluorotridecanoic acid (PFTrDA)           | 72629-94-8  | 0.00125 mg/kg | 53.2                    | 49         | 129        |
|                     |                                            | EP231X: Perfluorotetradecanoic acid (PFTeDA)         | 376-06-7    | 0.00312 mg/kg | # 51.9                  | 59         | 129        |
| P231C: Perfluoro    | alkyl Sulfonamides (QCLot: 2501993)        |                                                      |             |               |                         |            |            |
| B1919839-050        | Anonymous                                  | EP231X: Perfluorooctane sulfonamide (FOSA)           | 754-91-6    | 0.00125 mg/kg | 107                     | 52         | 132        |
|                     |                                            | EP231X: N-Methyl perfluorooctane sulfonamide         | 31506-32-8  | 0.00312 mg/kg | 87.8                    | 65         | 126        |
|                     |                                            | (MeFOSA)                                             |             |               |                         |            |            |
|                     |                                            | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2   | 0.00312 mg/kg | 85.7                    | 64         | 126        |
|                     |                                            | EP231X: N-Methyl perfluorooctane sulfonamidoethanol  | 24448-09-7  | 0.00312 mg/kg | 76.9                    | 63         | 124        |
|                     |                                            | (MeFOSE)                                             |             |               |                         |            |            |
|                     |                                            | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol   | 1691-99-2   | 0.00312 mg/kg | 86.5                    | 58         | 125        |
|                     |                                            | (EtFOSE)                                             |             |               |                         |            |            |
|                     |                                            | EP231X: N-Methyl perfluorooctane sulfonamidoacetic   | 2355-31-9   | 0.00125 mg/kg | 88.0                    | 61         | 130        |
|                     |                                            | acid (MeFOSAA)                                       |             |               |                         |            |            |
|                     |                                            | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic    | 2991-50-6   | 0.00125 mg/kg | 86.0                    | 55         | 130        |
|                     |                                            | acid (EtFOSAA)                                       |             |               |                         |            |            |
| 231C: Perfluoro     | alkyl Sulfonamides (QCLot: 2501997)        |                                                      |             |               |                         |            |            |
| B1919840-060        | HH_QC100_190724                            | EP231X: Perfluorooctane sulfonamide (FOSA)           | 754-91-6    | 0.00125 mg/kg | 70.8                    | 52         | 132        |
|                     |                                            | EP231X: N-Methyl perfluorooctane sulfonamide         | 31506-32-8  | 0.00312 mg/kg | 79.3                    | 65         | 126        |
|                     |                                            | (MeFOSA)                                             |             |               |                         |            |            |
|                     |                                            | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2   | 0.00312 mg/kg | 80.0                    | 64         | 126        |
|                     |                                            | EP231X: N-Methyl perfluorooctane sulfonamidoethanol  | 24448-09-7  | 0.00312 mg/kg | # 50.8                  | 63         | 124        |
|                     |                                            | (MeFOSE)                                             |             |               |                         |            |            |
|                     |                                            | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol   | 1691-99-2   | 0.00312 mg/kg | 65.7                    | 58         | 125        |
|                     |                                            | (EtFOSE)                                             |             |               |                         |            |            |
|                     |                                            | EP231X: N-Methyl perfluorooctane sulfonamidoacetic   | 2355-31-9   | 0.00125 mg/kg | 74.0                    | 61         | 130        |
|                     |                                            | acid (MeFOSAA)                                       |             |               |                         |            |            |
|                     |                                            | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic    | 2991-50-6   | 0.00125 mg/kg | 63.2                    | 55         | 130        |
|                     |                                            | acid (EtFOSAA)                                       |             |               |                         |            |            |
| P231D: (n:2) Fluc   | protelomer Sulfonic Acids (QCLot: 2501993) |                                                      |             |               |                         |            |            |
| B1919839-050        | Anonymous                                  | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)    | 757124-72-4 | 0.00125 mg/kg | 90.4                    | 54         | 130        |

Page : 15 of 16

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd



| sub-Matrix: SOIL        |                                         | Ма                                                                                            | Matrix Spike (MS) Report |                         |                         |            |            |
|-------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------|-------------------------|-------------------------|------------|------------|
|                         |                                         |                                                                                               |                          | Spike                   | SpikeRecovery(%)        | Recovery L | imits (%)  |
| aboratory sample ID     | Client sample ID                        | Method: Compound                                                                              | CAS Number               | Concentration           | MS                      | Low        | High       |
| P231D: (n:2) Fluc       | protelomer Sulfonic Acids (QCLot: 25019 | 993) - continued                                                                              |                          |                         |                         |            |            |
| B1919839-050            | Anonymous                               | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                                             | 27619-97-2               | 0.00125 mg/kg           | 92.8                    | 61         | 130        |
|                         |                                         | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                                             | 39108-34-4               | 0.00125 mg/kg           | 94.0                    | 62         | 130        |
|                         |                                         | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                                           | 120226-60-0              | 0.00125 mg/kg           | 94.8                    | 60         | 130        |
| P231D: (n:2) Fluc       | protelomer Sulfonic Acids (QCLot: 25019 | 997)                                                                                          |                          |                         |                         |            |            |
| B1919840-060            | HH QC100 190724                         | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                                             | 757124-72-4              | 0.00125 mg/kg           | 72.8                    | 54         | 130        |
|                         |                                         | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                                             | 27619-97-2               | 0.00125 mg/kg           | 69.2                    | 61         | 130        |
|                         |                                         | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                                             | 39108-34-4               | 0.00125 mg/kg           | 77.2                    | 62         | 130        |
|                         |                                         | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                                           | 120226-60-0              | 0.00125 mg/kg           | 86.4                    | 60         | 130        |
| ıb-Matrix: WATER        |                                         |                                                                                               |                          | Mi                      | atrix Spike (MS) Report |            |            |
| D-Maulx. WATER          |                                         |                                                                                               |                          | Spike                   | SpikeRecovery(%)        | Recovery L | imits (%)  |
| aboratory sample ID     | Client sample ID                        | Method: Compound                                                                              | CAS Number               | Concentration           | MS                      | Low        | High       |
|                         | alkyl Sulfonic Acids (QCLot: 2501826)   |                                                                                               |                          |                         |                         |            | , ,        |
| EB1919838-043 Anonymous |                                         | EP231X-LL: Perfluorobutane sulfonic acid (PFBS)                                               | 375-73-5                 | 0.05 µg/L               | 73.8                    | 50         | 130        |
|                         | Attoriymous                             | EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)                                             | 2706-91-4                | 0.05 μg/L               | 73.0                    | 50         | 130        |
|                         |                                         | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)                                              | 355-46-4                 | 0.05 μg/L               | 76.4                    | 50         | 130        |
|                         |                                         | EP231X-LL: Perfluoroheptane sulfonic acid (PFHxS)                                             | 375-92-8                 | 0.05 μg/L               | 75.0                    | 50         | 130        |
|                         |                                         | EP231X-LL: Perfluorooctane sulfonic acid (PFOS)                                               | 1763-23-1                | 0.05 μg/L               | 68.6                    | 50         | 130        |
|                         |                                         | EP231X-LL: Perfluorodecane sulfonic acid (PFDS)                                               | 335-77-3                 | 0.05 μg/L               | 57.6                    | 40         | 130        |
| D224D. Dorfluore        | ealkyl Carboxylic Acids(QCLot: 2501826  |                                                                                               |                          | 5.00 pg.=               | 2110                    |            |            |
| EB1919838-043           |                                         |                                                                                               | 275 22 4                 | 0.05                    | 74.0                    | 50         | 130        |
| EB1919838-043           | Anonymous                               | EP231X-LL: Perfluorobutanoic acid (PFBA)                                                      | 375-22-4                 | 0.25 μg/L               | 71.8                    | 50         |            |
|                         |                                         | EP231X-LL: Perfluoropentanoic acid (PFPeA)                                                    | 2706-90-3                | 0.05 µg/L               | 75.4                    | 50         | 130        |
|                         |                                         | EP231X-LL: Perfluorohexanoic acid (PFHxA)                                                     | 307-24-4                 | 0.05 µg/L               | 81.6                    | 50         | 130        |
|                         |                                         | EP231X-LL: Perfluoroheptanoic acid (PFHpA)                                                    | 375-85-9<br>335-67-1     | 0.05 µg/L               | 79.8<br>78.2            | 50<br>50   | 130<br>130 |
|                         |                                         | EP231X-LL: Perfluorooctanoic acid (PFOA)                                                      | 375-95-1                 | 0.05 µg/L               |                         |            | 130        |
|                         |                                         | EP231X-LL: Perfluorononanoic acid (PFNA)                                                      | 335-76-2                 | 0.05 µg/L               | 71.0<br>66.4            | 50<br>50   | 130        |
|                         |                                         | EP231X-LL: Perfluorodecanoic acid (PFDA)                                                      | 2058-94-8                | 0.05 μg/L<br>0.05 μg/L  | 53.6                    | 40         | 130        |
|                         |                                         | EP231X-LL: Perfluoroundecanoic acid (PFUnDA)                                                  | 307-55-1                 | 0.05 μg/L<br>0.05 μg/L  | 55.0                    | 40         | 130        |
|                         |                                         | EP231X-LL: Perfluorododecanoic acid (PFDoDA)                                                  | 72629-94-8               | 0.05 μg/L<br>0.05 μg/L  | 74.8                    | 40         | 130        |
|                         |                                         | EP231X-LL: Perfluorotridecanoic acid (PFTrDA) EP231X-LL: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7                 | 0.03 μg/L<br>0.125 μg/L | 61.8                    | 40         | 130        |
|                         |                                         | EP231X-LL. Perilluorotetradecarioic acid (PFTeDA)                                             | 310-00-1                 | 0.125 μg/L              | 01.0                    | 40         | 130        |
|                         | alkyl Sulfonamides (QCLot: 2501826)     |                                                                                               |                          |                         |                         |            |            |
| EB1919838-043           | Anonymous                               | EP231X-LL: Perfluorooctane sulfonamide (FOSA)                                                 | 754-91-6                 | 0.05 μg/L               | 63.6                    | 40         | 130        |
|                         |                                         | EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)                                      | 31506-32-8               | 0.125 μg/L              | 59.9                    | 40         | 130        |
|                         |                                         | EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)                                       | 4151-50-2                | 0.125 μg/L              | 52.2                    | 40         | 130        |
|                         |                                         | EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)                               | 24448-09-7               | 0.125 μg/L              | 51.0                    | 50         | 130        |

Page : 16 of 16

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd



| Sub-Matrix: WATER                                                |                                            |                                                                      | Matrix Spike (MS) Report |               |                  |                     |      |  |
|------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------|--------------------------|---------------|------------------|---------------------|------|--|
|                                                                  |                                            |                                                                      |                          | Spike         | SpikeRecovery(%) | Recovery Limits (%) |      |  |
| Laboratory sample ID                                             | Client sample ID                           | Method: Compound                                                     | CAS Number               | Concentration | MS               | Low                 | High |  |
| EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2501826) - continued |                                            |                                                                      |                          |               |                  |                     |      |  |
| EB1919838-043                                                    | Anonymous                                  | EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2                | 0.125 μg/L    | 57.1             | 40                  | 130  |  |
|                                                                  |                                            | EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9                | 0.05 μg/L     | 52.8             | 50                  | 130  |  |
|                                                                  |                                            | EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6                | 0.05 μg/L     | 51.0             | 40                  | 130  |  |
| EP231D: (n:2) Fluo                                               | protelomer Sulfonic Acids (QCLot: 2501826) |                                                                      |                          |               |                  |                     |      |  |
| EB1919838-043                                                    | Anonymous                                  | EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | 757124-72-4              | 0.05 μg/L     | 81.4             | 50                  | 130  |  |
|                                                                  |                                            | EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                 | 27619-97-2               | 0.05 μg/L     | 78.0             | 50                  | 130  |  |
|                                                                  |                                            | EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                 | 39108-34-4               | 0.05 μg/L     | 69.0             | 50                  | 130  |  |
|                                                                  |                                            | EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)               | 120226-60-0              | 0.05 μg/L     | 52.4             | 50                  | 130  |  |



# QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EB1919840** Page : 1 of 8

Amendment : 1

Client : AECOM Australia Pty Ltd Laboratory : Environmental Division Brisbane

 Contact
 : CAMDEN McCOSKER
 Telephone
 : +61 7 3552 8616

 Project
 : 60609758\_HH
 Date Samples Received
 : 01-Aug-2019

 Site
 : --- Issue Date
 : 12-Aug-2019

Sampler : CAMDEN McCOSKER No. of samples received : 68
Order number : 60609758 2.0 No. of samples analysed : 23

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

### **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

### **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

### **Outliers : Frequency of Quality Control Samples**

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 8

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd

Project : 60609758\_HH

**Outliers: Quality Control Samples** 

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

| Compound Group Name                     | Laboratory Sample ID | Client Sample ID | Analyte                | CAS Number | Data       | Limits  | Comment                               |
|-----------------------------------------|----------------------|------------------|------------------------|------------|------------|---------|---------------------------------------|
| Matrix Spike (MS) Recoveries            |                      |                  |                        |            |            |         |                                       |
| EP231A: Perfluoroalkyl Sulfonic Acids   | EB1919839050         | Anonymous        | Perfluorooctane        | 1763-23-1  | Not        |         | MS recovery not determined,           |
|                                         |                      |                  | sulfonic acid (PFOS)   |            | Determined |         | background level greater than or      |
|                                         |                      |                  |                        |            |            |         | equal to 4x spike level.              |
| EP231A: Perfluoroalkyl Sulfonic Acids   | EB1919840060         | HH_QC100_190724  | Perfluorooctane        | 1763-23-1  | Not        |         | MS recovery not determined,           |
|                                         |                      |                  | sulfonic acid (PFOS)   |            | Determined |         | background level greater than or      |
|                                         |                      |                  |                        |            |            |         | equal to 4x spike level.              |
| EP231B: Perfluoroalkyl Carboxylic Acids | EB1919840060         | HH_QC100_190724  | Perfluorotetradecanoic | 376-06-7   | 51.9 %     | 59-129% | Recovery less than lower data quality |
|                                         |                      |                  | acid (PFTeDA)          |            |            |         | objective                             |
| EP231C: Perfluoroalkyl Sulfonamides     | EB1919840060         | HH_QC100_190724  | N-Methyl               | 24448-09-7 | 50.8 %     | 63-124% | Recovery less than lower data quality |
|                                         |                      |                  | perfluorooctane        |            |            |         | objective                             |
|                                         |                      |                  | sulfonamidoethanol     |            |            |         |                                       |
|                                         |                      |                  | (MeFOSE)               |            |            |         |                                       |

### **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation: × = Holding time breach : ✓ = Within holding time

| Matrix: SOIL                                |                                 |             |   |                        | Evaluation | : × = Holding time | e breach ; ✓ = vvitni | n nolaing time |
|---------------------------------------------|---------------------------------|-------------|---|------------------------|------------|--------------------|-----------------------|----------------|
| Method                                      |                                 | Sample Date | E | traction / Preparation |            |                    | Analysis              |                |
| Container / Client Sample ID(s)             | Container / Client Sample ID(s) |             |   |                        | Evaluation | Date analysed      | Due for analysis      | Evaluation     |
| EA055: Moisture Content (Dried @ 105-110°C) |                                 |             |   |                        |            |                    |                       |                |
| HDPE Soil Jar (EA055)                       |                                 |             |   |                        |            |                    |                       |                |
| HH_BH01_0.1_190724,                         | HH_BH01_1.0_190724,             | 24-Jul-2019 |   |                        |            | 01-Aug-2019        | 07-Aug-2019           | ✓              |
| HH_BH01_9.0_190724,                         | HH_SS1_0.1_190724,              |             |   |                        |            |                    |                       |                |
| HH_SS1_0.5_190724,                          | HH_SS2_0.1_190724,              |             |   |                        |            |                    |                       |                |
| HH_SS4_0.1_190724,                          | HH_SS3_0.1_190724,              |             |   |                        |            |                    |                       |                |
| HH_SS3_0.5_190724,                          | HH_BH02_0.5_190724,             |             |   |                        |            |                    |                       |                |
| HH_BH02_1.0_190724,                         | HH_QC100_190724,                |             |   |                        |            |                    |                       |                |
| HH_QC101_190724                             |                                 |             |   |                        |            |                    |                       |                |
| HDPE Soil Jar (EA055)                       |                                 |             |   |                        |            |                    |                       |                |
| HH_BH02_9.0_190725,                         | HH_BH03_0.1_190725,             | 25-Jul-2019 |   |                        |            | 01-Aug-2019        | 08-Aug-2019           | ✓              |
| HH_BH03_1.0_190725,                         | HH_BH03_9.0_190725,             |             |   |                        |            |                    |                       |                |
| HH_BH04_0.25_190725,                        | HH_BH04_0.5_190725,             |             |   |                        |            |                    |                       |                |
| HH_BH04_9.0_190725                          |                                 |             |   |                        |            |                    |                       |                |

Page : 3 of 8

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd



| Method                                  |                     | Sample Date | Ex             | traction / Preparation |            |               |                  |            |
|-----------------------------------------|---------------------|-------------|----------------|------------------------|------------|---------------|------------------|------------|
| Container / Client Sample ID(s)         |                     |             | Date extracted | Due for extraction     | Evaluation | Date analysed | Due for analysis | Evaluation |
| EP231A: Perfluoroalkyl Sulfonic Acids   |                     |             |                |                        |            |               |                  |            |
| HDPE Soil Jar (EP231X)                  |                     |             |                |                        |            |               |                  |            |
| HH_BH01_0.1_190724,                     | HH_BH01_1.0_190724, | 24-Jul-2019 | 02-Aug-2019    | 20-Jan-2020            | ✓          | 05-Aug-2019   | 11-Sep-2019      | ✓          |
| HH_BH01_9.0_190724,                     | HH_SS1_0.1_190724,  |             |                |                        |            |               |                  |            |
| HH_SS1_0.5_190724,                      | HH_SS2_0.1_190724,  |             |                |                        |            |               |                  |            |
| HH_SS4_0.1_190724,                      | HH_SS3_0.1_190724,  |             |                |                        |            |               |                  |            |
| HH_SS3_0.5_190724,                      | HH_BH02_0.5_190724, |             |                |                        |            |               |                  |            |
| HH_BH02_1.0_190724                      |                     |             |                |                        |            |               |                  |            |
| HDPE Soil Jar (EP231X)                  |                     |             |                |                        |            |               |                  |            |
| HH_QC100_190724,                        | HH_QC101_190724     | 24-Jul-2019 | 03-Aug-2019    | 20-Jan-2020            | ✓          | 05-Aug-2019   | 12-Sep-2019      | ✓          |
| HDPE Soil Jar (EP231X)                  |                     |             |                |                        |            |               |                  |            |
| HH_BH02_9.0_190725,                     | HH_BH03_0.1_190725, | 25-Jul-2019 | 02-Aug-2019    | 21-Jan-2020            | ✓          | 05-Aug-2019   | 11-Sep-2019      | ✓          |
| HH_BH03_1.0_190725,                     | HH_BH03_9.0_190725, |             |                |                        |            |               |                  |            |
| HH_BH04_0.25_190725,                    | HH_BH04_0.5_190725  |             |                |                        |            |               |                  |            |
| HDPE Soil Jar (EP231X)                  |                     |             |                |                        |            |               |                  |            |
| HH_BH04_9.0_190725                      |                     | 25-Jul-2019 | 03-Aug-2019    | 21-Jan-2020            | ✓          | 05-Aug-2019   | 12-Sep-2019      | ✓          |
| EP231B: Perfluoroalkyl Carboxylic Acids |                     |             |                |                        |            |               |                  |            |
| HDPE Soil Jar (EP231X)                  |                     |             |                |                        |            |               |                  |            |
| HH_BH01_0.1_190724,                     | HH_BH01_1.0_190724, | 24-Jul-2019 | 02-Aug-2019    | 20-Jan-2020            | ✓          | 05-Aug-2019   | 11-Sep-2019      | ✓          |
| HH_BH01_9.0_190724,                     | HH_SS1_0.1_190724,  |             |                |                        |            |               |                  |            |
| HH_SS1_0.5_190724,                      | HH_SS2_0.1_190724,  |             |                |                        |            |               |                  |            |
| HH_SS4_0.1_190724,                      | HH_SS3_0.1_190724,  |             |                |                        |            |               |                  |            |
| HH_SS3_0.5_190724,                      | HH_BH02_0.5_190724, |             |                |                        |            |               |                  |            |
| HH_BH02_1.0_190724                      |                     |             |                |                        |            |               |                  |            |
| HDPE Soil Jar (EP231X)                  |                     |             |                |                        |            |               |                  |            |
| HH_QC100_190724,                        | HH_QC101_190724     | 24-Jul-2019 | 03-Aug-2019    | 20-Jan-2020            | ✓          | 05-Aug-2019   | 12-Sep-2019      | ✓          |
| HDPE Soil Jar (EP231X)                  |                     |             |                |                        |            |               |                  |            |
| HH_BH02_9.0_190725,                     | HH_BH03_0.1_190725, | 25-Jul-2019 | 02-Aug-2019    | 21-Jan-2020            | ✓          | 05-Aug-2019   | 11-Sep-2019      | ✓          |
| HH_BH03_1.0_190725,                     | HH_BH03_9.0_190725, |             |                |                        |            |               |                  |            |
| HH_BH04_0.25_190725,                    | HH_BH04_0.5_190725  |             |                |                        |            |               |                  |            |
| HDPE Soil Jar (EP231X)                  |                     |             |                | 04 1 0055              |            |               | 40.0             |            |
| HH_BH04_9.0_190725                      |                     | 25-Jul-2019 | 03-Aug-2019    | 21-Jan-2020            | ✓          | 05-Aug-2019   | 12-Sep-2019      | ✓          |

Page : 4 of 8

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd



| Method                                   |                     | Sample Date | Ex             | ktraction / Preparation |            |               | Analysis         |            |
|------------------------------------------|---------------------|-------------|----------------|-------------------------|------------|---------------|------------------|------------|
| Container / Client Sample ID(s)          |                     |             | Date extracted | Due for extraction      | Evaluation | Date analysed | Due for analysis | Evaluation |
| EP231C: Perfluoroalkyl Sulfonamides      |                     |             |                |                         |            |               |                  |            |
| HDPE Soil Jar (EP231X)                   |                     |             |                |                         |            |               |                  |            |
| HH_BH01_0.1_190724,                      | HH_BH01_1.0_190724, | 24-Jul-2019 | 02-Aug-2019    | 20-Jan-2020             | 1          | 05-Aug-2019   | 11-Sep-2019      | ✓          |
| HH_BH01_9.0_190724,                      | HH_SS1_0.1_190724,  |             |                |                         |            |               |                  |            |
| HH_SS1_0.5_190724,                       | HH_SS2_0.1_190724,  |             |                |                         |            |               |                  |            |
| HH_SS4_0.1_190724,                       | HH_SS3_0.1_190724,  |             |                |                         |            |               |                  |            |
| HH_SS3_0.5_190724,                       | HH_BH02_0.5_190724, |             |                |                         |            |               |                  |            |
| HH_BH02_1.0_190724                       |                     |             |                |                         |            |               |                  |            |
| HDPE Soil Jar (EP231X)                   |                     |             |                |                         |            |               |                  |            |
| HH_QC100_190724,                         | HH_QC101_190724     | 24-Jul-2019 | 03-Aug-2019    | 20-Jan-2020             | 1          | 05-Aug-2019   | 12-Sep-2019      | ✓          |
| HDPE Soil Jar (EP231X)                   |                     |             |                |                         |            |               |                  |            |
| HH_BH02_9.0_190725,                      | HH_BH03_0.1_190725, | 25-Jul-2019 | 02-Aug-2019    | 21-Jan-2020             | ✓          | 05-Aug-2019   | 11-Sep-2019      | ✓          |
| HH_BH03_1.0_190725,                      | HH_BH03_9.0_190725, |             |                |                         |            |               |                  |            |
| HH_BH04_0.25_190725,                     | HH_BH04_0.5_190725  |             |                |                         |            |               |                  |            |
| HDPE Soil Jar (EP231X)                   |                     |             |                |                         |            |               |                  |            |
| HH_BH04_9.0_190725                       |                     | 25-Jul-2019 | 03-Aug-2019    | 21-Jan-2020             | 1          | 05-Aug-2019   | 12-Sep-2019      | ✓          |
| EP231D: (n:2) Fluorotelomer Sulfonic Aci | ds                  |             |                |                         |            |               |                  |            |
| HDPE Soil Jar (EP231X)                   |                     |             |                |                         |            |               |                  |            |
| HH_BH01_0.1_190724,                      | HH_BH01_1.0_190724, | 24-Jul-2019 | 02-Aug-2019    | 20-Jan-2020             | ✓          | 05-Aug-2019   | 11-Sep-2019      | ✓          |
| HH_BH01_9.0_190724,                      | HH_SS1_0.1_190724,  |             |                |                         |            |               |                  |            |
| HH_SS1_0.5_190724,                       | HH_SS2_0.1_190724,  |             |                |                         |            |               |                  |            |
| HH_SS4_0.1_190724,                       | HH_SS3_0.1_190724,  |             |                |                         |            |               |                  |            |
| HH_SS3_0.5_190724,                       | HH_BH02_0.5_190724, |             |                |                         |            |               |                  |            |
| HH_BH02_1.0_190724                       |                     |             |                |                         |            |               |                  |            |
| HDPE Soil Jar (EP231X)                   |                     |             |                |                         |            |               |                  |            |
| HH_QC100_190724,                         | HH_QC101_190724     | 24-Jul-2019 | 03-Aug-2019    | 20-Jan-2020             | ✓          | 05-Aug-2019   | 12-Sep-2019      | ✓          |
| HDPE Soil Jar (EP231X)                   |                     |             |                |                         |            |               |                  |            |
| HH_BH02_9.0_190725,                      | HH_BH03_0.1_190725, | 25-Jul-2019 | 02-Aug-2019    | 21-Jan-2020             | ✓          | 05-Aug-2019   | 11-Sep-2019      | ✓          |
| HH_BH03_1.0_190725,                      | HH_BH03_9.0_190725, |             |                |                         |            |               |                  |            |
| HH_BH04_0.25_190725,                     | HH_BH04_0.5_190725  |             |                |                         |            |               |                  |            |
| HDPE Soil Jar (EP231X)                   |                     |             |                | 04 1 0005               |            |               | 40.0             |            |
| HH_BH04_9.0_190725                       |                     | 25-Jul-2019 | 03-Aug-2019    | 21-Jan-2020             | ✓          | 05-Aug-2019   | 12-Sep-2019      | ✓          |

Page : 5 of 8

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd



| Matrix: SOIL                               |                     |             | n: 🗴 = Holding time | ding time breach ; ✓ = Within holding time |            |                     |                   |                 |
|--------------------------------------------|---------------------|-------------|---------------------|--------------------------------------------|------------|---------------------|-------------------|-----------------|
| Method                                     |                     | Sample Date | E                   | traction / Preparation                     |            | Analysis            |                   |                 |
| Container / Client Sample ID(s)            |                     |             | Date extracted      | Due for extraction                         | Evaluation | Date analysed       | Due for analysis  | Evaluation      |
| EP231P: PFAS Sums                          |                     |             |                     |                                            |            |                     |                   |                 |
| HDPE Soil Jar (EP231X)                     |                     | 04.1.10040  | 00.4                | 00 1 0000                                  | ,          | 05.4                | 44.0 0040         |                 |
| HH_BH01_0.1_190724,                        | HH_BH01_1.0_190724, | 24-Jul-2019 | 02-Aug-2019         | 20-Jan-2020                                | ✓          | 05-Aug-2019         | 11-Sep-2019       | ✓               |
| HH_BH01_9.0_190724,                        | HH_SS1_0.1_190724,  |             |                     |                                            |            |                     |                   |                 |
| HH_SS1_0.5_190724,                         | HH_SS2_0.1_190724,  |             |                     |                                            |            |                     |                   |                 |
| HH_SS4_0.1_190724,                         | HH_SS3_0.1_190724,  |             |                     |                                            |            |                     |                   |                 |
| HH_SS3_0.5_190724,                         | HH_BH02_0.5_190724, |             |                     |                                            |            |                     |                   |                 |
| HH_BH02_1.0_190724                         |                     |             |                     |                                            |            |                     |                   |                 |
| HDPE Soil Jar (EP231X)                     |                     |             |                     |                                            |            |                     |                   |                 |
| HH_QC100_190724,                           | HH_QC101_190724     | 24-Jul-2019 | 03-Aug-2019         | 20-Jan-2020                                | ✓          | 05-Aug-2019         | 12-Sep-2019       | <b>✓</b>        |
| HDPE Soil Jar (EP231X)                     |                     |             |                     | 04 1 0000                                  | _          |                     | 44.0 0040         |                 |
| HH_BH02_9.0_190725,                        | HH_BH03_0.1_190725, | 25-Jul-2019 | 02-Aug-2019         | 21-Jan-2020                                | ✓          | 05-Aug-2019         | 11-Sep-2019       | ✓               |
| HH_BH03_1.0_190725,                        | HH_BH03_9.0_190725, |             |                     |                                            |            |                     |                   |                 |
| HH_BH04_0.25_190725,                       | HH_BH04_0.5_190725  |             |                     |                                            |            |                     |                   |                 |
| HDPE Soil Jar (EP231X)                     |                     |             |                     | 04 1 0000                                  |            |                     | 10.0 0010         |                 |
| HH_BH04_9.0_190725                         |                     | 25-Jul-2019 | 03-Aug-2019         | 21-Jan-2020                                | ✓          | 05-Aug-2019         | 12-Sep-2019       | ✓               |
| Matrix: WATER                              |                     |             |                     |                                            | Evaluation | n: 🗴 = Holding time | breach ; ✓ = With | in holding time |
| Method                                     |                     | Sample Date | E                   | traction / Preparation                     |            |                     | Analysis          |                 |
| Container / Client Sample ID(s)            |                     |             | Date extracted      | Due for extraction                         | Evaluation | Date analysed       | Due for analysis  | Evaluation      |
| EP231A: Perfluoroalkyl Sulfonic Acids      |                     |             |                     |                                            |            |                     |                   |                 |
| HDPE (no PTFE) (EP231X-LL)                 |                     |             |                     |                                            |            |                     |                   |                 |
| HH_QC300_190724,                           | HH_QC301_190724     | 24-Jul-2019 | 01-Aug-2019         | 20-Jan-2020                                | ✓          | 01-Aug-2019         | 20-Jan-2020       | ✓               |
| HDPE (no PTFE) (EP231X-LL)                 |                     |             |                     |                                            |            |                     |                   |                 |
| HH_QC302_190725                            |                     | 25-Jul-2019 | 01-Aug-2019         | 21-Jan-2020                                | ✓          | 01-Aug-2019         | 21-Jan-2020       | ✓               |
| EP231B: Perfluoroalkyl Carboxylic Acids    |                     |             |                     |                                            |            |                     |                   |                 |
| HDPE (no PTFE) (EP231X-LL)                 |                     |             |                     | 00 1 0000                                  |            |                     | 00 1 0000         |                 |
| HH_QC300_190724,                           | HH_QC301_190724     | 24-Jul-2019 | 01-Aug-2019         | 20-Jan-2020                                | ✓          | 01-Aug-2019         | 20-Jan-2020       | ✓               |
| HDPE (no PTFE) (EP231X-LL)                 |                     | 05.1.10040  | 04.4 . 0040         | 04 1 0000                                  |            | 04.4                | 04 1 0000         |                 |
| HH_QC302_190725                            |                     | 25-Jul-2019 | 01-Aug-2019         | 21-Jan-2020                                | ✓          | 01-Aug-2019         | 21-Jan-2020       | <b>✓</b>        |
| EP231C: Perfluoroalkyl Sulfonamides        |                     |             |                     |                                            |            |                     |                   |                 |
| HDPE (no PTFE) (EP231X-LL)                 |                     |             |                     |                                            |            |                     |                   |                 |
| HH_QC300_190724,                           | HH_QC301_190724     | 24-Jul-2019 | 01-Aug-2019         | 20-Jan-2020                                | ✓          | 01-Aug-2019         | 20-Jan-2020       | <b>✓</b>        |
| HDPE (no PTFE) (EP231X-LL)                 |                     |             |                     |                                            |            |                     |                   |                 |
| HH_QC302_190725                            |                     | 25-Jul-2019 | 01-Aug-2019         | 21-Jan-2020                                | ✓          | 01-Aug-2019         | 21-Jan-2020       | ✓               |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids |                     |             |                     |                                            |            |                     |                   |                 |
| HDPE (no PTFE) (EP231X-LL)                 |                     |             |                     | 00 1 0000                                  |            |                     | 00 1 0000         |                 |
| HH_QC300_190724,                           | HH_QC301_190724     | 24-Jul-2019 | 01-Aug-2019         | 20-Jan-2020                                | ✓          | 01-Aug-2019         | 20-Jan-2020       | ✓               |
| HDPE (no PTFE) (EP231X-LL)                 |                     | 25 1 122 2  | 04 4 0045           | 24 los 2020                                |            | 04 4 0045           | 24 Jan 2000       |                 |
| HH_QC302_190725                            |                     | 25-Jul-2019 | 01-Aug-2019         | 21-Jan-2020                                | ✓          | 01-Aug-2019         | 21-Jan-2020       | <b>✓</b>        |

Page : 6 of 8

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd



| Matrix: <b>WATER</b> Evaluation: × = Holding time breach; ✓ = Within holdi |                 |             |                |                        |            |               |                  | n holding time. |
|----------------------------------------------------------------------------|-----------------|-------------|----------------|------------------------|------------|---------------|------------------|-----------------|
| Method                                                                     |                 |             | Ex             | traction / Preparation |            | Analysis      |                  |                 |
| Container / Client Sample ID(s)                                            |                 |             | Date extracted | Due for extraction     | Evaluation | Date analysed | Due for analysis | Evaluation      |
| EP231P: PFAS Sums                                                          |                 |             |                |                        |            |               |                  |                 |
| HDPE (no PTFE) (EP231X-LL)<br>HH_QC300_190724,                             | HH_QC301_190724 | 24-Jul-2019 | 01-Aug-2019    | 20-Jan-2020            | ✓          | 01-Aug-2019   | 20-Jan-2020      | <b>✓</b>        |
| HDPE (no PTFE) (EP231X-LL)<br>HH_QC302_190725                              |                 | 25-Jul-2019 | 01-Aug-2019    | 21-Jan-2020            | 1          | 01-Aug-2019   | 21-Jan-2020      | <b>✓</b>        |

Page : 7 of 8

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd

Project : 60609758\_HH



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: SOIL                                         |           |    |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification; ✓ = Quality Control frequency within specification  |
|------------------------------------------------------|-----------|----|---------|-----------|-------------------|-----------------|-------------------------------------------------------------------------------|
| Quality Control Sample Type                          |           | С  | ount    |           | Rate (%)          |                 | Quality Control Specification                                                 |
| Analytical Methods                                   | Method    | OC | Reaular | Actual    | Expected          | Evaluation      |                                                                               |
| Laboratory Duplicates (DUP)                          |           |    |         |           |                   |                 |                                                                               |
| Moisture Content                                     | EA055     | 4  | 38      | 10.53     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 4  | 39      | 10.26     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Laboratory Control Samples (LCS)                     |           |    |         |           |                   |                 |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 2  | 39      | 5.13      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Method Blanks (MB)                                   |           |    |         |           |                   |                 |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 2  | 39      | 5.13      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Matrix Spikes (MS)                                   |           |    |         |           |                   |                 |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 2  | 39      | 5.13      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Matrix: WATER                                        |           |    |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification ; ✓ = Quality Control frequency within specification |
| Quality Control Sample Type                          |           | С  | ount    |           | Rate (%)          |                 | Quality Control Specification                                                 |
| Analytical Methods                                   | Method    | QC | Reaular | Actual    | Expected          | Evaluation      |                                                                               |
| Laboratory Duplicates (DUP)                          |           |    |         |           |                   |                 |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 2  | 14      | 14.29     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Laboratory Control Samples (LCS)                     |           |    |         |           |                   |                 |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 1  | 14      | 7.14      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Method Blanks (MB)                                   |           |    |         |           |                   |                 |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 1  | 14      | 7.14      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Matrix Spikes (MS)                                   |           |    |         |           |                   |                 |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 1  | 14      | 7.14      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |

Page : 8 of 8

Work Order : EB1919840 Amendment 1
Client : AECOM Australia Pty Ltd

Project : 60609758\_HH



### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                      | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------|-----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture Content                                        | EA055     | SOIL   | In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Per- and Polyfluoroalkyl Substances<br>(PFAS) by LCMSMS | EP231X    | SOIL   | In-House. A portion of soil is extracted with MTBE. The extract is taken to dryness, made up in mobile phase. Analysis is by LC/MSMS, ESI Negative Mode using MRM. Where commercially available, isotopically labelled analogues of the target analytes are used as internal standards for quantification. Where a labelled analogue is not commercially available, the internal standard with similar chemistry and the closest retention time to the target is used for quantification. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. This method complies with the quality control definitions as stated in QSM 5.1. Data is reviewed in line with the DQOs as stated in QSM5.1 |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS     | EP231X-LL | WATER  | In-house: Analysis of fresh and saline waters by solid phase extraction followed by LC-Electrospray-MS-MS, Negative Mode using MRM. Where commercially available, isotopically labelled analogues of the target analytes are used as internal standards for quantification. Where a labelled analogue is not commercially available, the internal standard with similar chemistry and the closest retention time to the target is used for quantification. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. This method complies with the quality control definitions as stated in QSM 5.1. Data is reviewed in line with the DQOs as stated in QSM5.1                                |
| Preparation Methods                                     | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample Extraction for PFAS                              | EP231-PR  | SOIL   | In house                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SPE preparation for LL and saline PFCs                  | EP231-SPE | WATER  | In house                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



### CHAIN OF CUSTODY

ALS Laboratory: please tick →

□ADELAIDE 21 Burma Road Pooraka SA 5095 Ph; 08 8359 0890 E; adelaide@alsglobal.com □BRISBANE 32 Shand Street Stafford QLD 4053

Ph; 07 3243 7222 E: samples.brisbane@alsglobal.com

GLADSTONE 46 Callemondah Drive Clinton QLD 4680
Ph; 07 7471 5600 E: gladstone@alsglobal.com

DMACKAY 78 Harbour Road Mackay QLD 4740 Ph: 07 4944 0177 E: mackay@alsglobal.com

□MELBOURNE 2-4 Westall Road Springvale VIC 3171 Ph; 03 8549 9500 E: samples melbourne@alsglobal.com □MUDGEE 27 Sydney Road Mudgee NSW 2850 Ph; 02 6372 6735 E: mudgee.mail@alsglobal.com DNEWCASTLE 5/585 Maitland Rd Mayfield West NSW 2304 Ph: 02 4014 2500 E: samples.newcastle@alsglobal.com DNOWRA 4/13 Geary Place North Nowra NSW 2541 Ph: 02423 2063 E: nowra@alsglobal.com

DPERTH 10 Hod Way Malaga WA 6090
Ph: 08 9209 7655 E: samples.perth@alsglobal.com

DSYDNEY 277-289 Woodpark Road Smithfield NSW 2164 Ph. 02 8784 8555 E: sampies.sydney@alsqlobal.com UTOWNSVILLE 14-15 Deama Court Bohle OLD 4818 Ph. 07 4796 0600 E: townsville.environmental@alsglobal.com

DWOLLONGONG 99 Kenny Street Wollongong NSW 2500 Ph; 02 4225 3125 E: portkembla@alsglobal.com

|            | please tick →                                     |                |           |                                                         |           |              |                  |            |                                    |                                             |               | 300000000000000000000000000000000000000         |                                        |           |                                                                     |                                       |
|------------|---------------------------------------------------|----------------|-----------|---------------------------------------------------------|-----------|--------------|------------------|------------|------------------------------------|---------------------------------------------|---------------|-------------------------------------------------|----------------------------------------|-----------|---------------------------------------------------------------------|---------------------------------------|
| CLIENT:    | AECOM Pty Ltd                                     |                |           | ROUND REQUIREMENTS :                                    | _         | rd TAT (List | due date):       | 5 Day      | /                                  |                                             |               |                                                 | RATORY US                              | SE ONL    |                                                                     | N. N.                                 |
| OFFICE:    | Brisbane                                          |                |           | I TAT may be longer for some tests e.g.<br>ce Organics) | " Non St  | andard or ur | gent TAT (Lis    |            |                                    |                                             |               | Custody Sea                                     | I Intact?<br>zen ice bricks p          | oresent u | Yes                                                                 | No N/A                                |
| PROJECT    | : 60609758 2.0                                    |                | ALS QU    | 701211011                                               | N/112/19  |              |                  | -          |                                    | NCE NUMBER                                  | R (Circle)    | receipt?                                        |                                        |           |                                                                     | No N/A                                |
| ORDER N    | UMBER:                                            |                |           | AE                                                      |           | 1908         |                  | 2 coc:     | <b>G</b> 2                         | 3 4                                         | 5 6           | <b>设在的存在是</b>                                   | nple Temperatu                         | ure on Re | eceipt:                                                             | ,c                                    |
| PROJECT    | MANAGER: James Peachey                            | CONTACT P      | H: 0426 2 | 206 362                                                 | Due       |              | 180/6            | 19 OF:     | O 2                                | 3 4                                         | 5 6           | 7 Other comm                                    |                                        | ///       | <b>第一个人的</b>                                                        |                                       |
| SAMPLER    | : Camden McCosker                                 | SAMPLER M      | OBILE:    | 0499 990 214                                            | RELINQUIS | HED BY:      | P                | RECE       | IVED BY:                           |                                             |               | RELINQUISHED                                    | BY: )/                                 | 164       | RECEIVED BY:                                                        |                                       |
| COC emai   | iled to ALS? ( YES / NO)                          | EDD FORMA      | AT (or de | fault):                                                 | Camden    |              |                  |            |                                    |                                             |               |                                                 | 1/2                                    | 1/        | DATE: THE                                                           |                                       |
| Email Rep  | orts to (will default to PM if no other addresses | s are listed): |           |                                                         | DATE/TIME |              | 001              | DATE       | TIME:                              |                                             |               | DATE/TIME:                                      | 10                                     | 114       | DATE/TIME:                                                          |                                       |
| Email Invo | oice to (will default to PM if no other addresses | are listed):   |           |                                                         | 31/       | 7/19         | 0941             | 0          |                                    |                                             |               |                                                 | - 6                                    |           |                                                                     |                                       |
| COMMEN     | TS/SPECIAL HANDLING/STORAGE OR DISP               | osal: Pla      | ste .     | forward to A                                            | me "      | ith          | Tho C            | ac         |                                    |                                             |               |                                                 |                                        |           |                                                                     |                                       |
| ALS<br>USE | SAMPLE DETA<br>MATRIX: SOLID (S) W                | NLS            |           | CONTAINER INFO                                          |           |              | ANALY            | SIS PEOURE | D Including Stred, specify T       | SUITES (NB. S<br>Fotal (unflitere<br>requir | d bottle requ | must be listed to atti<br>lred) or Dissolved (f | act suite price)<br>ield filtered bott | tle       | Additional In                                                       | formation                             |
| LAB ID     | SAMPLE ID                                         | DATE / TIME    | MATRIX    | TYPE & PRESERVATIVE codes below)                        | (refer to | TOTAL        | EP231X (PFAS 28) |            | EP231X-ST (PFAS<br>28 super trace) | EP231X-LL (low<br>level)                    |               |                                                 | Ş                                      | C dd      | comments on likely cont<br>ilutions, or samples req<br>nalysis etc. | aminant levels,<br>uiring specific QC |
| /          | AH - QC200-190724                                 | 24/7/19        | 5         | 1P                                                      | 2         | 1            | /                |            |                                    |                                             | N15           | 0/019402                                        |                                        |           | formed-                                                             | town                                  |
| //         | HH_ &CZO1_ 190724                                 | 11             | 11        | 11                                                      |           | 1            | /                |            |                                    |                                             | N1            | 9/01940                                         |                                        |           | ı                                                                   | 1                                     |
| /          | HH- QC202 190726                                  | (1             | 11        | 19                                                      |           | 1            |                  |            |                                    |                                             | N'            | 9/01940                                         | 4                                      |           | t'                                                                  |                                       |
| /          | HH_ a c203-1907                                   | 25/7/19        | 11        | 11                                                      |           | 1.           |                  |            |                                    |                                             | 1             | 19/0194                                         | 05                                     |           | しつ                                                                  |                                       |
| 1          | HH- QC 204-19072                                  |                | и         | ( )                                                     |           | 11           |                  |            |                                    |                                             | N1            | 9/01940                                         | â                                      | \         |                                                                     |                                       |
| //         | HH- Q CZO5-19075                                  | . 11           | 11        | /1                                                      |           | (1           |                  |            |                                    |                                             | N19           | 019407                                          |                                        | _         | ()                                                                  |                                       |
|            | ,                                                 | ,              |           |                                                         |           | Y .          |                  |            |                                    |                                             |               | 10                                              |                                        |           | ,                                                                   |                                       |
| 1          |                                                   |                |           |                                                         |           | 1            |                  |            |                                    | /                                           | /             |                                                 |                                        |           | /                                                                   |                                       |
| /1         |                                                   | /              |           |                                                         |           | /            | FA 18            | @12°       | IWI                                |                                             |               |                                                 |                                        | /         |                                                                     | -/-                                   |
| /1         | /                                                 |                |           |                                                         |           | /            | 0                | 2 /11      | G 2819                             |                                             |               |                                                 | $\overline{}$                          |           |                                                                     | /                                     |
| 1          |                                                   |                |           | <i>h</i>                                                | /         |              | 200              | ZAU        | 4010                               |                                             |               | -                                               |                                        |           |                                                                     |                                       |
|            | (                                                 |                |           |                                                         |           |              | DY               | An         | 13                                 | 186                                         |               |                                                 |                                        |           |                                                                     |                                       |
| 72.        |                                                   |                |           |                                                         | TOTAL     |              |                  |            |                                    |                                             |               |                                                 |                                        |           |                                                                     | 46                                    |

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved Plastic; N = Notal Hold Preserved Plastic; N = Hold Preserved P



# **National Measurement Institute**

# SAMPLE RECEIPT NOTIFICATION

**CUSTOMER DETAILS** 

**Attention: JAMES PEACHEY** 

Lab: National Measurement Institute

Customer: AECOM AUSTRALIA PTY LTD

Contact: Susanne Neuman

LABORATORY DETAILS

Address: LEVEL 8

Email:

Telephone:

Address: 105 Delhi Road, North Ryde, NSW

NSW 2113

FORTITUDE VALLEY QLD 4006

james.peachey@aecom.com

Email: Susanne.Neuman@measurement.gov.au

Telephone: 02 9449 0181

Fax: Fax:

#### **SAMPLE DETAILS**

NMI Job Name: AEC006/190802/2

Total No. of Samples: 6

| LRNs       | Customer Sample ID | Lab Sample Description |
|------------|--------------------|------------------------|
| N19/019402 | HH-QC200-190724    | SOIL                   |
| N19/019403 | HH-QC201-190724    | SOIL                   |
| N19/019404 | HH-QC202-190724    | SOIL                   |
| N19/019405 | HH-QC203-190725    | SOIL                   |
| N19/019406 | HH-QC204-190725    | SOIL                   |
| N19/019407 | HH-QC205-190725    | SOIL                   |
|            |                    |                        |

#### SAMPLE RECEIVED CONDITION

Date samples received: 2-AUG-2019

Sample received in good order: Yes

NMI Quotation no. provided:

Client purchase order number: 60609758 2 0

Temperature of samples: Chilled

Comments: Sample N19/019404-07 on hold

Estimated report date: 9-AUG-2019

Mode of Delivery: Courier

#### **Additional Terms and Conditions**

Incomplete / unclear information about samples or required testing will delay the start of the analysis work

If you require your Purchase Order (PO) number to be included on our invoice, please provide the number during sample submission and before the completion of work to avoid unnecessary delays and/or additional processing/handling fees.

The lodgement of an order or receipt of samples for NMI services referenced in this Sample Receipt Notification constitutes an acceptence of the current version of NMI Terms and Conditions or other applicable Terms referenced in the NMI Quotation. NMI Terms and Conditions are available on the web at

http://www.measurement.gov.au/Services/EnvironmentalTesting/Pages/Terms-and-Conditions.aspx



# National Measurement Institute



#### REPORT OF ANALYSIS

Page: 1 of 4 Report No. RN1242618

: AECO06/190802/2

Client : AECOM AUSTRALIA PTY LTD

LEVEL 8

540 WICKHAM STREET

**Quote No.** : QT-02018 **Order No.** : 60609758\_2\_0

Job No.

Date Received : 02-AUG-2019
Sampled By : CLIENT

Attention : JAMES PEACHEY Project Name : 60609758 2.0

Your Client Services Manager : Richard Coghlan

Phone : 02 9449 0161

| Lab Reg No. | Sample Ref      | Sample Description |  |
|-------------|-----------------|--------------------|--|
| N19/019402  | HH-QC200-190724 | SOIL               |  |
| N19/019403  | HH-QC201-190724 | SOIL               |  |

| Lab Reg No.                    |             | N19/019402  | N19/019403  |        |
|--------------------------------|-------------|-------------|-------------|--------|
| Date Sampled                   | 1           | 24-JUL-2019 | 24-JUL-2019 |        |
|                                |             |             |             |        |
|                                | Units       |             |             | Method |
| PFAS (per-and poly-fluoroalkyl | substances) |             |             |        |
| PFBA (375-22-4)                | mg/kg       | < 0.002     | < 0.002     | NR70   |
| PFPeA (2706-90-3)              | mg/kg       | < 0.002     | < 0.002     | NR70   |
| PFHxA (307-24-4)               | mg/kg       | < 0.001     | < 0.001     | NR70   |
| PFHpA (375-85-9)               | mg/kg       | < 0.001     | < 0.001     | NR70   |
| PFOA (335-67-1)                | mg/kg       | < 0.001     | < 0.001     | NR70   |
| PFNA (375-95-1)                | mg/kg       | < 0.001     | 0.0022      | NR70   |
| PFDA (335-76-2)                | mg/kg       | < 0.001     | < 0.001     | NR70   |
| PFUdA (2058-94-8)              | mg/kg       | < 0.002     | < 0.002     | NR70   |
| PFDoA (307-55-1)               | mg/kg       | < 0.002     | < 0.002     | NR70   |
| PFTrDA (72629-94-8)            | mg/kg       | < 0.002     | < 0.002     | NR70   |
| PFTeDA (376-06-7)              | mg/kg       | < 0.002     | < 0.002     | NR70   |
| PFHxDA (67905-19-5)            | mg/kg       | < 0.002     | < 0.002     | NR70   |
| PFODA (16517-11-6)             | mg/kg       | < 0.005     | < 0.005     | NR70   |
| FOUEA (70887-84-2)             | mg/kg       | < 0.001     | < 0.001     | NR70   |
| PFBS (375-73-5)                | mg/kg       | < 0.001     | < 0.001     | NR70   |
| PFPeS (2706-91-4)              | mg/kg       | < 0.001     | < 0.001     | NR70   |
| PFHxS (355-46-4)               | mg/kg       | < 0.001     | < 0.001     | NR70   |
| PFHpS (375-92-8)               | mg/kg       | < 0.001     | < 0.001     | NR70   |
| PFOS (1763-23-1)               | mg/kg       | 0.013       | 0.22        | NR70   |
| PFNS (68259-12-1)              | mg/kg       | < 0.001     | < 0.001     | NR70   |
| PFDS (335-77-3)                | mg/kg       | < 0.001     | < 0.001     | NR70   |
| PFOSA (754-91-6)               | mg/kg       | < 0.001     | < 0.001     | NR70   |
| N-MeFOSA (31506-32-8)          | mg/kg       | < 0.002     | < 0.002     | NR70   |
| N-EtFOSA (4151-50-2)           | mg/kg       | < 0.002     | < 0.002     | NR70   |
| N-MeFOSAA (2355-31-9)          | mg/kg       | < 0.002     | < 0.002     | NR70   |
| N-EtFOSAA(2991-50-6)           | mg/kg       | < 0.002     | < 0.002     | NR70   |
| N-MeFOSE (24448-09-7)          | mg/kg       | < 0.005     | < 0.005     | NR70   |
| N-EtFOSE (1691-99-2)           | mg/kg       | < 0.005     | < 0.005     | NR70   |

# **REPORT OF ANALYSIS**

Page: 2 of 4 Report No. RN1242618

| Lab Reg No.                    |               | N19/019402  | N19/019403  |          |        |
|--------------------------------|---------------|-------------|-------------|----------|--------|
| Date Sampled                   |               | 24-JUL-2019 | 24-JUL-2019 |          |        |
|                                |               |             |             |          |        |
|                                | Units         |             |             | N        | lethod |
| PFAS (per-and poly-fluoroalkyl | substances)   |             |             |          |        |
| 4:2 FTS (757124-72-4)          | mg/kg         | < 0.001     | < 0.001     | N        | IR70   |
| 6:2 FTS (27619-97-2)           | mg/kg         | < 0.001     | < 0.001     | N        | IR70   |
| 8:2 FTS (39108-34-4)           | mg/kg         | < 0.001     | < 0.001     | N        | IR70   |
| 10:2 FTS (120226-60-0)         | mg/kg         | < 0.002     | < 0.002     | N        | IR70   |
| 8:2 diPAP (678-41-1)           | mg/kg         | < 0.002     | < 0.002     | N        | IR70   |
| PFBA (Surrogate Recovery)      | %             | 122         | 113         | N        | IR70   |
| PFPeA (Surrogate Recovery)     | %             | 116         | 124         | N        | IR70   |
| PFHxA (Surrogate Recovery)     | %             | 109         | 123         | N        | IR70   |
| PFHpA (Surrogate Recovery)     | %             | 106         | 119         | N        | IR70   |
| PFOA (Surrogate Recovery)      | %             | 123         | 125         | N        | IR70   |
| PFNA (Surrogate Recovery)      | %             | 114         | 108         | N        | IR70   |
| PFDA (Surrogate Recovery)      | %             | 123         | 124         | N        | IR70   |
| PFUdA (Surrogate Recovery)     | %             | 114         | 120         | N        | IR70   |
| PFDoA (Surrogate Recovery)     | %             | 118         | 129         | N        | IR70   |
| PFTeDA (Surrogate Recovery)    | %             | 135         | 118         | N        | IR70   |
| PFHxDA (Surrogate Recovery)    | %             | 161         | 167         | N        | IR70   |
| FOUEA (Surrogate Recovery)     | %             | 59          | 32          | N        | IR70   |
| PFBS (Surrogate Recovery)      | %             | 113         | 120         | N        | IR70   |
| PFHxS (Surrogate Recovery)     | %             | 113         | 113         | N        | IR70   |
| PFOS (Surrogate Recovery)      | %             | 128         | 122         | N        | IR70   |
| PFOSA (Surrogate Recovery)     | %             | 114         | 116         | N        | IR70   |
| N-MeFOSA (Surrogate Recover    | y)%           | 128         | 135         | N        | IR70   |
| N-EtFOSA (Surrogate Recovery   | ) %           | 122         | 127         | N        | IR70   |
| N-MeFOSAA (Surrogate Recove    | er <b>ý</b> ) | 110         | 113         | N        | IR70   |
| N-EtFOSAA (Surrogate Recover   | <b>1</b> %    | 111         | 98          | N        | IR70   |
| N-MeFOSE (Surrogate Recovery   | /)%           | 89          | 148         | N        | IR70   |
| N-EtFOSE (Surrogate Recovery)  | %             | 126         | 146         | N        | IR70   |
| 4:2 FTS (Surrogate Recovery)   | %             | 86          | 83          | N        | IR70   |
| 6:2 FTS (Surrogate Recovery)   | %             | 85          | 86          | N        | IR70   |
| 8:2 FTS (Surrogate Recovery)   | %             | 88          | 93          | N        | IR70   |
| 8:2 diPAP (Surrogate Recovery  | ) %           | 62          | 52          | N        | IR70   |
| Dates                          | ı             | ı           | 1           | <u> </u> |        |
| Date extracted                 |               | 6-AUG-2019  | 6-AUG-2019  |          |        |
| Date analysed                  |               | 12-AUG-2019 | 12-AUG-2019 |          |        |

N19/019402 To N19/019403

## **REPORT OF ANALYSIS**

Page: 3 of 4 Report No. RN1242618

PFOS is quantified using a combined branched and linear standard, linear and branched isomers are totalled for reporting.

All results corrected for labelled surrogate recoveries.

Selected PFAS surrogate recoveries are biased due to matrix effects.

Danny Slee, Section Manager

Organic - NSW
Accreditation No. 198

13-AUG-2019

| Lab Reg No.    |       | N19/019402  | N19/019403  |  |        |
|----------------|-------|-------------|-------------|--|--------|
| Date Sampled   |       | 24-JUL-2019 | 24-JUL-2019 |  |        |
|                |       |             |             |  |        |
|                | Units |             |             |  | Method |
| Trace Elements |       |             |             |  |        |
| Total Solids   | %     | 92.7        | 93.4        |  | NT2 49 |

Pankaj/Barai, Analyst Inorganics - NSW Accreditation No. 198

13-AUG-2019

All results are expressed on a dry weight basis.



Accredited for compliance with ISO/IEC 17025 - Testing. This report shall not be reproduced except in full. Results relate only to the sample(s) tested.

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

## **REPORT OF ANALYSIS**

Page: 4 of 4 Report No. RN1242618

This Report supersedes reports: RN1242286 RN1242606

Measurement Uncertainty is available upon request.

Chemical Accreditation 198: 105 Delhi Road, North Ryde, NSW, 2113

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au



# **Australian Government**

#### **National Measurement Institute**

#### **QUALITY ASSURANCE REPORT**

**Client:** AECOM AUSTRALIA PTY LTD

**NMI QA Report No:** AECO06/190802/2 **Sample Matrix:** Solid

| Analyte                | Method       | LOR   | Blank            | San      | ple Duplicates |          | Re        | coveries     |
|------------------------|--------------|-------|------------------|----------|----------------|----------|-----------|--------------|
|                        |              |       |                  | Sample   | Duplicate      | RPD      | LCS       | Matrix Spike |
|                        |              | mg/kg | mg/kg            | mg/kg    | mg/kg          | %        | %         | %            |
| PFBA (375-22-4)        | NR70         | 0.002 | <0.002           | NA       | NA             | NA       | 114       | NA           |
| PFPeA (2706-90-3)      | NR70         | 0.002 | <0.002           | NA<br>NA | NA<br>NA       | NA<br>NA | 103       | NA<br>NA     |
| PFHxA (307-24-4)       | NR70         | 0.002 | <0.002           | NA<br>NA | NA<br>NA       | NA<br>NA | 103       | NA<br>NA     |
| PFHpA (375-85-9)       | NR70         | 0.001 | <0.001           | NA<br>NA | NA<br>NA       | NA<br>NA | 108       | NA<br>NA     |
| PFOA (375-65-9)        | NR70         | 0.001 | <0.001           | NA<br>NA | NA<br>NA       | NA<br>NA | 104       | NA<br>NA     |
| PFNA (375-95-1)        | NR70         | 0.001 | <0.001           | NA<br>NA | NA<br>NA       | NA<br>NA | 115       | NA<br>NA     |
| PFDA (375-95-1)        | NR70         | 0.001 | <0.001           | NA<br>NA | NA<br>NA       | NA<br>NA | 108       | NA<br>NA     |
| PFUdA (2058-94-8)      | NR70         | 0.001 | <0.001           | NA<br>NA | NA<br>NA       | NA<br>NA | 108       | NA<br>NA     |
| PFDoA (307-55-1)       | NR70<br>NR70 | 0.002 | <0.002           | NA<br>NA | NA<br>NA       | NA<br>NA | 106       | NA<br>NA     |
| PFTrDA (72629-94-8)    | NR70         | 0.002 | <0.002           | NA<br>NA | NA<br>NA       | NA<br>NA | 104       | NA<br>NA     |
| PFTeDA (376-06-7)      | NR70         | 0.002 | <0.002           | NA<br>NA | NA<br>NA       | NA<br>NA | 118       | NA<br>NA     |
| PFHxDA (67905-19-5)    | NR70         | 0.002 | <0.002           | NA<br>NA | NA<br>NA       | NA<br>NA | 91        | NA<br>NA     |
| PFODA (16517-11-6)     | NR70         | 0.002 | <0.002           | NA<br>NA | NA<br>NA       | NA<br>NA | 99        | NA<br>NA     |
|                        | NR70         | 0.003 | <0.003           | NA<br>NA | NA<br>NA       | NA<br>NA | 104       | NA<br>NA     |
| FOUEA (70887-84-2)     | NR70         | 0.001 | <0.001           | NA<br>NA | NA<br>NA       | NA<br>NA | 95        | NA<br>NA     |
| PFBS (375-73-5)        | -            |       |                  |          |                |          |           |              |
| PFPeS (2706-91-4)      | NR70<br>NR70 | 0.001 | <0.001<br><0.001 | NA<br>NA | NA<br>NA       | NA<br>NA | 96<br>102 | NA<br>NA     |
| PFHxS (355-46-4)       | NR70         |       |                  | NA<br>NA | NA<br>NA       | NA<br>NA | 102       | NA<br>NA     |
| PFHpS (375-92-8)       | -            | 0.001 | <0.001           |          |                |          |           |              |
| PFOS (1763-23-1)       | NR70         | 0.002 | <0.002           | NA       | NA             | NA       | 107       | NA           |
| PFNS (68259-12-1)      | NR70         | 0.001 | <0.001           | NA       | NA             | NA       | 108       | NA           |
| PFDS (335-77-3)        | NR70         | 0.001 | <0.001           | NA       | NA             | NA       | 106       | NA           |
| PFOSA (754-91-6)       | NR70         | 0.001 | <0.001           | NA       | NA             | NA       | 106       | NA           |
| N-MeFOSA (31506-32-8)  | NR70         | 0.002 | <0.002           | NA       | NA             | NA       | 96        | NA           |
| N-EtFOSA (4151-50-2)   | NR70         | 0.002 | <0.002           | NA       | NA             | NA       | 98        | NA           |
| N-MeFOSAA (2355-31-9)  | NR70         | 0.002 | <0.002           | NA       | NA             | NA       | 100       | NA           |
| N-EtFOSAA(2991-50-6)   | NR70         | 0.002 | <0.002           | NA       | NA             | NA       | 101       | NA           |
| N-MeFOSE (24448-09-7)  | NR70         | 0.005 | <0.005           | NA       | NA             | NA       | 89        | NA           |
| N-EtFOSE (1691-99-2)   | NR70         | 0.005 | <0.005           | NA       | NA             | NA       | 128       | NA           |
| 4:2 FTS (757124-72-4)  | NR70         | 0.001 | <0.001           | NA       | NA             | NA       | 103       | NA           |
| 6:2 FTS (27619-97-2)   | NR70         | 0.001 | <0.001           | NA       | NA             | NA       | 108       | NA           |
| 8:2 FTS (39108-34-4)   | NR70         | 0.001 | <0.001           | NA       | NA             | NA       | 101       | NA           |
| 10:2 FTS (120226-60-0) | NR70         | 0.002 | <0.002           | NA       | NA             | NA       | 89        | NA           |
| 8:2 diPAP (678-41-1)   | NR70         | 0.002 | <0.002           | NA       | NA             | NA       | 107       | NA           |

Results expressed in percentage (%) or mg/kg wherever appropriate.

Acceptable Spike recovery is 50-150%.

Maximum acceptable RPDs on spikes and duplicates is 40%.

'NA' = Not Applicable.

RPD= Relative Percentage Difference.

Signed:

Danny Slee Organics Manager, NMI-North Ryde

Peller.

Date: 13/08/2019

#### FQM - Generic Chain of Custody Form

| ONSULTA | NT: AECOM                    |               |             | ADDRESS /   | OFFICE:                                        |               | SAMPI                                                                               | ER: NK                   |                                          | _                    |         |                                                   | -                                                |     |       |                                                  |          | Order Reference<br>31921176 |
|---------|------------------------------|---------------|-------------|-------------|------------------------------------------------|---------------|-------------------------------------------------------------------------------------|--------------------------|------------------------------------------|----------------------|---------|---------------------------------------------------|--------------------------------------------------|-----|-------|--------------------------------------------------|----------|-----------------------------|
|         | MANAGER (PM): James Peachey  |               |             |             | QFES Home Hill                                 |               | MOBILE: 0499989474 PHONE:                                                           |                          |                                          |                      |         |                                                   |                                                  |     |       |                                                  |          |                             |
|         | IUMBER & TASK CODE: 60609758 |               |             | P.O. NO.:   |                                                | 58 2.0        | EMAIL REPORT TO: james.peachey@aecom.com; janelle.passler@aecom.com;                |                          |                                          |                      |         |                                                   |                                                  |     |       |                                                  |          |                             |
| BULTS F | EQUIRED (Date):              |               |             | QUOTE NO.   |                                                |               | ANALYSIS REQUIRED including SUITES (note - suite codes must be listed to attract su |                          |                                          |                      |         |                                                   |                                                  |     |       |                                                  |          |                             |
| R LABOR | RATORY USE ONLY              | 1             | COMMENTS    |             | NDLING / STORAGE OR DISPOSA                    |               |                                                                                     |                          |                                          |                      |         | (Hote - solie codes mast be listed to stringer so |                                                  |     |       |                                                  |          |                             |
|         | EAL (circle appropriate)     | Но            |             |             | mples for further TOPA Selection               |               |                                                                                     | l s                      | 10                                       | Suite                |         | Suite                                             |                                                  |     |       |                                                  |          |                             |
| ict;    | Yes No N/A                   |               |             | •           |                                                |               | 1                                                                                   | *                        | FA                                       | 3                    | ا       | ı S                                               |                                                  |     |       |                                                  |          |                             |
| 1.16.34 | MPERATURE                    |               | <del></del> |             |                                                |               | 1                                                                                   | ASI                      | 4): F                                    | .AS                  | ig      | PFAS Full                                         | 1 1                                              |     |       | Tele                                             | enhane   | : + 61-7-3243 7222          |
| LLED:   |                              |               |             |             |                                                |               | 1                                                                                   | 1 2                      | TOT)                                     | <u> </u>             | ig l    | 1/2                                               |                                                  |     |       |                                                  | <b>-</b> |                             |
|         | SAMPLE INFORMATION (note: S  | = Soil, W=Wat | er)         |             | CONTAINER INFORM                               | ATION         | 1                                                                                   | 1×                       | ᇦ                                        | 1×.s                 | ν̄      | EP231X:                                           |                                                  |     |       | i                                                | 1        | 1                           |
| SID     | SAMPLE ID                    | MATRIX        | DATE        | Time        | Type / Code                                    | Total bottles |                                                                                     | EP231X-LL: PFAS Low Leve | EP231X-LL (TOPA): PFAS TOPA<br>Low Level | EP231X-ST: PFAS Full | İ       | <u> </u>                                          |                                                  |     |       |                                                  | HOLD     |                             |
|         | HH_MW01_190806               | w             | 6/08/19     | 1230        | Р                                              | 1             |                                                                                     | х                        |                                          |                      |         |                                                   |                                                  |     |       |                                                  |          |                             |
|         |                              | w             | 6/08/19     | 1305        | P                                              | 1             |                                                                                     | ×                        |                                          |                      | -       |                                                   |                                                  |     |       |                                                  |          |                             |
| r       | HH_MW03_190806               | w             | 6/08/19     | 1405        | P                                              | 1             |                                                                                     | х                        |                                          |                      |         |                                                   |                                                  |     |       | <del>                                     </del> | 1        |                             |
| ŧ.      | HH_MW04_190806               | w             | 6/08/19     | 1450        | P                                              | 1             |                                                                                     | Х                        |                                          |                      |         |                                                   |                                                  |     |       |                                                  |          |                             |
|         | HH_SED01_190806              | s             | 6/08/19     | 1530        | J                                              | 1             |                                                                                     |                          |                                          |                      |         | х                                                 |                                                  |     |       |                                                  |          | <del>-</del>                |
| )       | HH_SED02_190806              | s             | 6/08/19     | 1545        | J                                              | 11            |                                                                                     |                          |                                          |                      |         | х                                                 |                                                  |     |       |                                                  |          |                             |
|         | ,                            |               |             |             |                                                | -             |                                                                                     |                          |                                          | _                    |         | -                                                 |                                                  |     |       |                                                  |          |                             |
| -       | HH_QC106_190806              | w             | 6/08/19     |             |                                                | 1             |                                                                                     | X                        | -                                        |                      |         |                                                   |                                                  | +   | _     |                                                  |          | **                          |
| •       | HH_QC107_190806              | s             | 6/08/19     |             | J                                              | 1             |                                                                                     |                          | •                                        |                      |         | ×                                                 |                                                  |     |       |                                                  |          |                             |
|         | HH_QC206_190806              | w             | 6/08/19     |             | Р                                              | 1             |                                                                                     | Х                        |                                          |                      |         |                                                   |                                                  |     |       |                                                  |          | Forward to NMI              |
|         | HH_QC207_190806              | s             | 6/08/19     |             | J                                              | 11            |                                                                                     |                          |                                          |                      |         | ×                                                 |                                                  |     |       |                                                  |          | Forward to NMI              |
| ·-      | HH_QC303_190806              | w             | 6/08/19     |             | Р                                              | 1             |                                                                                     | х                        |                                          |                      |         |                                                   |                                                  |     |       |                                                  |          |                             |
| +       |                              |               |             |             |                                                |               |                                                                                     |                          |                                          | _                    |         | <u> </u>                                          |                                                  |     |       | <u> </u>                                         |          |                             |
| +       |                              |               |             | +           |                                                |               |                                                                                     |                          |                                          | _                    | $\perp$ | -                                                 |                                                  | - - |       | <u> </u>                                         |          |                             |
| +       |                              | -             |             | + +         | -                                              | <b>-</b>      |                                                                                     |                          | _                                        | +                    | +       |                                                   | -                                                |     |       |                                                  |          |                             |
| +       |                              |               |             |             |                                                |               |                                                                                     |                          |                                          | -                    |         |                                                   | <del>                                     </del> | -   |       |                                                  |          | ~                           |
| +       |                              | -             |             | +           |                                                | <u> </u>      |                                                                                     |                          |                                          | _                    | +       | +                                                 | -                                                | -   |       |                                                  |          |                             |
|         | RELINQUISHED BY              |               | 1 1 10      |             | RE                                             | CEIVED BY     |                                                                                     | اـــــا                  | 1.6                                      |                      |         |                                                   | RECEIVED                                         | BY  |       |                                                  |          | METHOD OF SHIPMENT          |
| ne:     | V. Juli                      | Date.         | 1/8/19      |             | Vame: N. Surran                                | ١             | Date:C                                                                              | 118                      | 19 Na                                    | me:                  | WXV.    |                                                   |                                                  |     | Date: | 13/8                                             | 1(9)     | Con' Note No:               |
|         |                              | Time:         | 1 1151      | $00 \mid c$ | Of: ALS MAC  BH = Sodium Hydroxide/Cd Preserve | KAY           | Time:                                                                               | 3:C                      | Of:                                      | A                    | 151     | 3KIS                                              |                                                  |     | Time: |                                                  |          | Transport Co:               |

COC Page of

Environmental Division

Brisbane

ECOM

V)-007-FM1

ANZ

# FQM - Generic Chain of Custody Form

Q4AN(EV)-007-FM1

| CONSULTANT: AECOM                                                                                                  | ADDRESS / OFFICE:                                                 |                   | SAMPLER: NK        |                   |                       |                             |               | Destination Laboratory                                                                                     |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------|--------------------|-------------------|-----------------------|-----------------------------|---------------|------------------------------------------------------------------------------------------------------------|
| PROJECT MANAGER (PM): James Peachey                                                                                | SITE: QFES Ayr                                                    |                   | MOBILE: 049998947  | 4                 |                       | PHONE:                      |               | Brisbane                                                                                                   |
| PROJECT NUMBER & TASK CODE: 60609758                                                                               | P.O. NO.:                                                         | 60609758 2.0      | EMAIL REPORT TO:   | jam es.peachey@ae | com.com; janelle,p    | assier@aecom.com;           |               |                                                                                                            |
| RESULTS REQUIRED (Date):                                                                                           | QUOTE NO.: BN/112                                                 | 119               | ANALYSIS REQUIRI   | D including SUITE | S (note - suite code: | s must be listed to attract | suite prices) |                                                                                                            |
| FOR LABORATORY USE ONLY  COOLER SEAL (circle appropriate)  Intact: Yes No N/A  SAMPLE TEMPERATURE  CHILLED: Yes No | COMMENTS/SPECIAL HANDLING/STORAGE Hold onto samples for further T |                   | LL: PFAS Low Level | Z   Z             | X: PFAS Full Suite    |                             |               | Notes: e.g. Highly contaminated samples e.g. "High PAHs expected".  Extra volume for QC or trace LORs etc. |
| SAMPLE INFORMATION (note: \$ = \$c                                                                                 |                                                                   | AINER INFORMATION | EP231X-            | EP231X-           | EP231                 |                             |               | 000                                                                                                        |

| RELINQUISHED BY                                                                                                                                                                                                                                                                | ( )                                                                                                                                                                                                                                                     | RECEIVED BY                                          | حاداد                   | RECEIVED BY           |                           | METHOD OF SHIPMENT |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------|-----------------------|---------------------------|--------------------|--|--|--|--|
| Name: N-MMO Date:                                                                                                                                                                                                                                                              | 9/8//9                                                                                                                                                                                                                                                  | Name: N SUTTON                                       | Date: 9819              | Name:                 | Date:                     | Con' Note No:      |  |  |  |  |
| Of: Time:                                                                                                                                                                                                                                                                      | 11500                                                                                                                                                                                                                                                   | OF ALS MPOCPY                                        | Time: ろは                | Of:                   | Time:                     | Transport Co:      |  |  |  |  |
| Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved                                                                                                                                                                                                           | Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved; AP - Airfreight Unpreserved Plastic |                                                      |                         |                       |                           |                    |  |  |  |  |
| = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved; AV = Airfreight Unpreserved Vial SG = Sulfuric Preserved Amber Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; |                                                                                                                                                                                                                                                         |                                                      |                         |                       |                           |                    |  |  |  |  |
| F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E                                                                                                                                                                                                         | = EDTA Preserved Bottles; ST = Steri                                                                                                                                                                                                                    | le Bottle; ASS = Plastic Bag for Acid Sulphate Soil: | s; B = Unpreserved Bag. | Soil Container Codes: | Jar = Unpreserved glass j | iar                |  |  |  |  |

COC Page of

# FQM - Generic Chain of Custody Form

Q4AN(EV)-007-FM1

| CONSULTANT: AECOM                                                                                                                                            | ADDRESS / OFFICE:                                                                                                          | SAMPLER: NK                                                                                  |                                                             | Destination Laboratory                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| PROJECT MANAGER (PM): James Peachey                                                                                                                          | SITE: QFES Airlie Beach                                                                                                    | MOBILE: 0499989474                                                                           | PHONE:                                                      | Brisbane                                                                                                   |
| PROJECT NUMBER & TASK CODE: 60609758                                                                                                                         | P.O. NO.: 60609758 2.0                                                                                                     | EMAIL REPORT TO: james.peachey@aec                                                           |                                                             |                                                                                                            |
| RESULTS REQUIRED (Date):                                                                                                                                     | QUOTE NO.: 8N /112/19                                                                                                      | ANALYSIS REQUIRED including SUITES                                                           | (note - suite codes must be listed to attract suite prices) |                                                                                                            |
| FOR LABORATORY USE ONLY  COOLER SEAL (circle appropriate)  Intact: Yes No N/A  SAMPLE TEMPERATURE  CHILLED: Yes No SAMPLE INFORMATION (note: S = Soil, W=Wat | COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:  Id onto samples for further TOPA Selection  (gr) CONTAINER INFORMATION | 1X-LL: PFAS Low Level 1X-LL (TOPA): PFAS TOPA Low Level 231X-ST: PFAS Full Suite Super Trace | 231X: PFAS Full Suite                                       | Notes: e.g. Highly contaminated samples e.g. "High PAHs expected".  Extra volume for QC or trace LORs etc. |

| ı |                                           |                                                |                       |                                                   |                                   |                                                 |                                      | 1                  |
|---|-------------------------------------------|------------------------------------------------|-----------------------|---------------------------------------------------|-----------------------------------|-------------------------------------------------|--------------------------------------|--------------------|
| 1 | Name to the                               | RELINQUISHED BY:                               |                       | RECEIVED BY                                       |                                   | RECEIVED E                                      | <u>3Y</u>                            | METHOD OF SHIPMENT |
|   | Name: IV ADD                              | Date: 9 / 8 / 0                                | 1500                  | Name: N. SOTTON                                   | Date: 9 8 19                      | Name:                                           | Date:                                | Con' Note No:      |
|   | Of:                                       | Time: (                                        | 700                   | OF ALS MACKAY                                     | Time: 3\cop                       | Of:                                             | Time:                                | Transport Co:      |
| ı | Water Container Codes: P = Unpreserved    | Plastic; N = Nitric Preserved Plastic; ORC = N | tric Preserved ORC;   | SH = Sodium Hydroxide/Cd Preserved; 3-Soc         | dium Hydroxide Preserved Plastic; | AG = Amber Glass Unpreserved; AP - Airfreight ( | Unpreserved Plastic                  |                    |
| 1 | V = VOA Vial HCl Preserved; VB = VOA Vial | Sodium Bisulphate Preserved; VS = VOA Vial S   | ulfuric Preserved; A\ | V = Airfreight Unpreserved Vial SG = Sulfuric Pre | eserved Amber Glass; H = HCl p    | reserved Plastic; HS = HCI preserved Speciation | i bottle; SP = Sulfuric Preserved Pl | astic;             |

F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag.

Soil Container Codes: Jar = Unpreserved glass jar

COC Page of

# FQM - Generic Chain of Custody Form

Q4AN(EV)-007-FM1

| CONSULTANT: AECOM                                                                                                  | ADDRESS / OFFICE:                                             |                       | SAMPL | ER: NK             |                                                                      |                    |                 |                 | 7 |                 |          | Destination Laboratory                                                                                     |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------|-------|--------------------|----------------------------------------------------------------------|--------------------|-----------------|-----------------|---|-----------------|----------|------------------------------------------------------------------------------------------------------------|
| PROJECT MANAGER (PM): James Peachey                                                                                | SITE: QFES Proserpin                                          | SITE: QFES Proserpine |       | MOBILE: 0499989474 |                                                                      |                    | PHONE:          |                 |   |                 | Brisbane |                                                                                                            |
| PROJECT NUMBER & TASK CODE: 60609758                                                                               | P.O. NO.:                                                     |                       |       |                    | EMAIL REPORT TO: james.peachey@aecom.com; janelle.passier@aecom.com; |                    |                 |                 |   |                 |          | 1                                                                                                          |
| RESULTS REQUIRED (Date):                                                                                           | QUOTE NO.: BN/17                                              | 119                   |       |                    |                                                                      |                    |                 | codes must be I |   | t suite prices) |          |                                                                                                            |
| FOR LABORATORY USE ONLY.  COOLER SEAL (circle appropriate)  Intact Yes No N/A  SAMPLE YEMPERATURE  CHILLED: Yes No | COMMENTS/ SPECIAL HANDLING/STOR Hold onto samples for further |                       |       | .: PFAS Low Level  | (TOPA): PFAS TOPA<br>ow Level                                        | T: PFAS Full Suite | DEAS Gull Suite |                 |   |                 |          | Notes: e.g. Highly contaminated samples e.g. "High PAHs expected".  Extra volume for QC or trace LORs etc. |
| SAMPLE INFORMATION (note: S = Sail                                                                                 | , W=Water) CO                                                 | NTAINER INFORMATION   |       | 23:1X-LI           | 14X-LL                                                               | 231X-5             | P234¥-          |                 |   |                 |          |                                                                                                            |

|                                                           |                                               | :                                                             |                                                                |                                                |                    |
|-----------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|--------------------|
|                                                           |                                               |                                                               |                                                                |                                                |                    |
|                                                           |                                               |                                                               |                                                                |                                                |                    |
|                                                           |                                               |                                                               |                                                                |                                                |                    |
|                                                           |                                               |                                                               |                                                                |                                                |                    |
|                                                           |                                               |                                                               |                                                                |                                                |                    |
|                                                           |                                               |                                                               |                                                                |                                                |                    |
|                                                           |                                               |                                                               |                                                                |                                                |                    |
|                                                           |                                               |                                                               |                                                                |                                                |                    |
|                                                           |                                               |                                                               |                                                                |                                                |                    |
|                                                           |                                               |                                                               |                                                                |                                                |                    |
|                                                           |                                               | ·                                                             |                                                                |                                                |                    |
| RELINQUISHE                                               |                                               | RECEIVED BY                                                   | RI                                                             | ECEIVED BY                                     | METHOD OF SHIPMENT |
| Name: W JUW RELINQUISHER                                  | Date: 9/8//9                                  | Name: N.SUTTON<br>Of: PLS MACKAY                              | Date: <b>8</b> 8 9 Name: Time: <b>3</b> CO Of:                 | Date:                                          | Con' Note No:      |
| Of:                                                       | Time: ( / /5:00                               | 10t: ALS MACKAY                                               | Time: 3:00 Of:                                                 | Time:                                          | Transport Co:      |
| Water Container Codes: P = Unpreserved Plastic; N = Nitri | c Preserved Plastic; ORC = Nitric Preserved   | RC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium H          | ydroxide Preserved Plastic; AG = Amber Glass Unpreserved; AP - | Airfreight Unpreserved Plastic                 |                    |
| V = VOA Vial HCl Preserved; VB = VOA Vial Sodium Bisulpha | te Preserved; VS = VOA Vial Sulfuric Preserve | t; AV = Airfreight Unpreserved Vial SG = Sulfuric Preserve    | d Amber Glass; H = HCl preserved Plastic; HS = HCl preserved   | Speciation bottle; SP = Sulfuric Preserved Pla | stic;              |
| F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preser | ved Bottle; E = EDTA Preserved Bottles; ST =  | terile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = | Unpreserved Bag. So                                            | il Container Codes: Jar = Unpreserved glass    | jar ·              |



# **SAMPLE RECEIPT NOTIFICATION (SRN)**

Work Order : EB1921176

Brisbane

Client : AECOM Australia Pty Ltd Laboratory : Environmental Division Brisbane

Contact : MR JAMES PEACHEY Contact : Carsten Emrich

Address : Address : 2 Byth Street Stafford QLD Australia

4053

 Telephone
 : +61 07 3553 2000
 Telephone
 : +61 7 3552 8616

 Facsimile
 : +61 07 3553 2050
 Facsimile
 : +61-7-3243 7218

Project : 60609758 Page : 1 of 4

 Order number
 : 60609758 2.0
 Quote number
 : EB2019AECOMAU0002 (BN/112/19)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : QFES Sampler : NK

**Dates** 

Date

**Delivery Details** 

Mode of Delivery : Carrier Security Seal : Intact.

No. of coolers/boxes : 2 Temperature : 1.4, 1.2°C - Ice present

Receipt Detail : MEDIUM ESKIES No. of samples received / analysed : 39 / 37

#### General Comments

forwarding fee.

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please be advised that samples "HH\_QC206\_190806", "HH\_QC207\_190806",

will be forwarded to NMI for analysis. Please note that this will incur a freight

- Discounted Package Prices apply only when specific ALS Group Codes ("W', 'S', 'NT' suites) are referenced on COCs.
- Super Trace PFAS analysis will be conducted by ALS Environmental, Sydney, NATA accreditation no. 825, Site No. 10911 (Micro site no. 14913).
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Analysis will be conducted by ALS Environmental, Brisbane, NATA accreditation no. 825, Site No. 818 (Micro site no. 18958).
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.



: 13-Aug-2019 Issue Date

Page

3 of 4 EB1921176 Amendment 0 Work Order Client : AECOM Australia Pty Ltd



#### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

# Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

|               | the date of samplin sampling date wi | ckets without a time | SOIL - EA055-103<br>Moisture Content | SOIL - EP231X (solids)<br>PFAS - Full Suite (28 analytes) |
|---------------|--------------------------------------|----------------------|--------------------------------------|-----------------------------------------------------------|
| EB1921176-005 | 06-Aug-2019 15:30                    | HH_SED01_190806      | ✓                                    | ✓                                                         |
| EB1921176-006 | 06-Aug-2019 15:45                    | HH_SED02_190806      | ✓                                    | ✓                                                         |
| EB1921176-008 | 06-Aug-2019 00:00                    | HH_QC107_190806      | 1                                    | ✓                                                         |
|               |                                      |                      |                                      |                                                           |
|               |                                      |                      |                                      |                                                           |
|               |                                      |                      |                                      |                                                           |
|               | +                                    | +                    |                                      |                                                           |
|               | <del> </del>                         | <del> </del>         | -                                    |                                                           |
|               | +                                    | +                    |                                      |                                                           |
|               | +                                    | +                    | -                                    |                                                           |
|               | +                                    | +                    |                                      |                                                           |

| Matrix: WATER  Laboratory sample | Client sampling<br>date / time | Client sample ID | (On Hold) WATER<br>No analysis requested | WATER - EP231X-LL (EB)<br>PFAS - Full Suite Low Level (28 anal | WATER - EP231X-ST<br>PFAS - Super Trace Waters Long Su |
|----------------------------------|--------------------------------|------------------|------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|
| EB1921176-001                    | 06-Aug-2019 12:30              | HH_MW01_190806   |                                          | 1                                                              |                                                        |
| EB1921176-002                    | 06-Aug-2019 13:05              | HH_MW02_190806   |                                          | ✓                                                              |                                                        |
| EB1921176-003                    | 06-Aug-2019 14:05              | HH_MW03_190806   |                                          | ✓                                                              |                                                        |
| EB1921176-004                    | 06-Aug-2019 14:50              | HH_MW04_190806   |                                          | ✓                                                              |                                                        |
| EB1921176-007                    | [ 06-Aug-2019 ]                | HH_QC106_190806  |                                          | ✓                                                              |                                                        |
| EB1921176-009                    | 06-Aug-2019 00:00              | HH_QC303_190806  |                                          | ✓                                                              |                                                        |
|                                  |                                |                  |                                          |                                                                |                                                        |
|                                  |                                | <del> </del>     |                                          |                                                                |                                                        |
|                                  |                                |                  | -                                        | +                                                              |                                                        |
|                                  |                                | <del> </del>     | -                                        | +                                                              | Щ.                                                     |
|                                  |                                |                  |                                          |                                                                |                                                        |

: 13-Aug-2019 Issue Date

Page

4 of 4 EB1921176 Amendment 0 Work Order Client : AECOM Australia Pty Ltd



|             |                   | (On Hold) WATER | WATER - EP231X-LL (EB)                       | PFAS - Full Suite Low Level (28 analytes) | WATER - EP231X-ST<br>PFAS - Super Trace Waters Long Suite (28 |
|-------------|-------------------|-----------------|----------------------------------------------|-------------------------------------------|---------------------------------------------------------------|
|             |                   |                 |                                              |                                           | > 1                                                           |
|             |                   |                 |                                              |                                           |                                                               |
|             | '<br><del>'</del> |                 |                                              |                                           |                                                               |
|             |                   | -               |                                              |                                           |                                                               |
|             | +                 | -               |                                              |                                           |                                                               |
|             |                   | -               | +                                            |                                           |                                                               |
|             | +                 | -               | -                                            |                                           |                                                               |
| <del></del> | +                 | -               |                                              |                                           |                                                               |
|             | +                 | -               | +                                            |                                           |                                                               |
| ·           | +                 | 1               |                                              |                                           |                                                               |
|             |                   | -               |                                              |                                           |                                                               |
|             | <br>              |                 |                                              |                                           |                                                               |
|             |                   |                 |                                              |                                           |                                                               |
|             |                   |                 |                                              |                                           |                                                               |
|             |                   |                 | <u>.                                    </u> |                                           |                                                               |

# Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

# Requested Deliverables

#### **ACCOUNTS PAYABLE**

| 7.00000                                                                       |       |                                  |
|-------------------------------------------------------------------------------|-------|----------------------------------|
| - A4 - AU Tax Invoice (INV)                                                   | Email | AP_CustomerService.ANZ@aecom.com |
| JAMES PEACHEY                                                                 |       |                                  |
| <ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>                  | Email | james.peachey@aecom.com          |
| - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)                   | Email | james.peachey@aecom.com          |
| - *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)                           | Email | james.peachey@aecom.com          |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN)                | Email | james.peachey@aecom.com          |
| - A4 - AU Tax Invoice (INV)                                                   | Email | james.peachey@aecom.com          |
| - Chain of Custody (CoC) (COC)                                                | Email | james.peachey@aecom.com          |
| - EDI Format - ESDAT (ESDAT)                                                  | Email | james.peachey@aecom.com          |
| JANELLE PASSIER                                                               |       |                                  |
| <ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>                  | Email | janelle.passier@aecom.com        |
| <ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul> | Email | janelle.passier@aecom.com        |
| - *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)                           | Email | janelle.passier@aecom.com        |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN)                | Email | janelle.passier@aecom.com        |
| - A4 - AU Tax Invoice (INV)                                                   | Email | janelle.passier@aecom.com        |
| - Chain of Custody (CoC) (COC)                                                | Email | janelle.passier@aecom.com        |
| - EDI Format - ESDAT (ESDAT)                                                  | Email | janelle.passier@aecom.com        |
|                                                                               |       |                                  |



# **CERTIFICATE OF ANALYSIS**

**Work Order** : **EB1921176-AJ** Page : 1 of 9

Amendment : 3

Client : AECOM Australia Pty Ltd Laboratory : Environmental Division Brisbane

Contact : MR JAMES PEACHEY Contact : Carsten Emrich

Address :

Brisbane

Telephone : +61 07 3553 2000 Project : 60609758

Order number : 60609758 2.0

C-O-C number : ---Sampler : NK
Site : OFES

Quote number : BN/112/19

No. of samples received : 9
No. of samples analysed : 9

- Environmental Division bi

Address : 2 Byth Street Stafford QLD Australia 4053

Telephone : +61 7 3552 8616

Date Samples Received : 13-Aug-2019 09:30

Date Analysis Commenced : 15-Aug-2019 Issue Date : 04-Sep-2019 13:58



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Diana Mesa 2IC Organic Chemist Brisbane Organics, Stafford, QLD Kim McCabe Senior Inorganic Chemist Brisbane Inorganics, Stafford, QLD

Page : 2 of 9

Work Order : EB1921176-AJ Amendment 3
Client : AECOM Australia Pty Ltd

Project : 60609758



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X-LL: Samples were diluted due to matrix interference. LOR adjusted accordingly.
- Super Trace PFAS analysis will be conducted by ALS Environmental, Sydney, NATA accreditation no. 825, Site No. 10911 (Micro site no. 14913).
- Amendment (04/09/2019): This report has been amended and re-released to allow the reporting of additional analytical data.
- Amendment (29/8/19): This report has been amended to allow the splitting of the work order into 5 separate reports. All analysis results are as per the previous report.
- Amendment (30/8/19): This report has been amended to allow the the work order to be split into 4 separate reports. All analysis results are as per the previous report.
- EP231X-ST: Sample EB1921176 015 required dilution prior to extraction due to matrix interferences (high sediment content). LOR values have been adjusted accordingly.
- EP231X-LL & EP231X: Matrix spike shows results out of control limit due to primary sample matrix interference. Confirmed by re-extraction and re-analysis.
- EP231X: Particular samples show poor surrogate recovery due to matrix interference. Confirmed by re-extraction and re-analysis.
- EP231X: Duplicate shows results out of control limit due to sample heterogeneity. Confirmed by re-extraction and re-analysis.

: 3 of 9 : EB1921176-AJ Amendment 3 Work Order : AECOM Australia Pty Ltd : 60609758 Client

Project



| Sub-Matrix: SOIL<br>(Matrix: SOIL)               |            | Clie          | ent sample ID  | HH_SED01_190806   | HH_SED02_190806   | HH_QC107_190806   | <br> |
|--------------------------------------------------|------------|---------------|----------------|-------------------|-------------------|-------------------|------|
|                                                  | С          | lient samplii | ng date / time | 06-Aug-2019 15:30 | 06-Aug-2019 15:45 | 06-Aug-2019 00:00 | <br> |
| Compound                                         | CAS Number | LOR           | Unit           | EB1921176-005     | EB1921176-006     | EB1921176-008     | <br> |
|                                                  |            |               |                | Result            | Result            | Result            | <br> |
| EA055: Moisture Content (Dried @ 105             | 5-110°C)   |               |                |                   |                   |                   |      |
| Moisture Content                                 |            | 0.1           | %              | 8.5               | 10.9              | 8.2               | <br> |
| EP231A: Perfluoroalkyl Sulfonic Acids            | ;          |               |                |                   |                   |                   |      |
| Perfluorobutane sulfonic acid (PFBS)             | 375-73-5   | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <br> |
| Perfluoropentane sulfonic acid (PFPeS)           | 2706-91-4  | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <br> |
| Perfluorohexane sulfonic acid (PFHxS)            | 355-46-4   | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <br> |
| Perfluoroheptane sulfonic acid (PFHpS)           | 375-92-8   | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <br> |
| Perfluorooctane sulfonic acid (PFOS)             | 1763-23-1  | 0.0002        | mg/kg          | 0.0021            | 0.0004            | 0.0014            | <br> |
| Perfluorodecane sulfonic acid (PFDS)             | 335-77-3   | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <br> |
| P231B: Perfluoroalkyl Carboxylic Ac              | ids        |               |                |                   |                   |                   |      |
| Perfluorobutanoic acid (PFBA)                    | 375-22-4   | 0.001         | mg/kg          | <0.001            | <0.001            | <0.001            | <br> |
| Perfluoropentanoic acid (PFPeA)                  | 2706-90-3  | 0.0002        | mg/kg          | <0.0002           | 0.0003            | <0.0002           | <br> |
| Perfluorohexanoic acid (PFHxA)                   | 307-24-4   | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <br> |
| Perfluoroheptanoic acid (PFHpA)                  | 375-85-9   | 0.0002        | mg/kg          | <0.0002           | 0.0002            | <0.0002           | <br> |
| Perfluorooctanoic acid (PFOA)                    | 335-67-1   | 0.0002        | mg/kg          | <0.0002           | 0.0002            | <0.0002           | <br> |
| Perfluorononanoic acid (PFNA)                    | 375-95-1   | 0.0002        | mg/kg          | <0.0002           | 0.0005            | <0.0002           | <br> |
| Perfluorodecanoic acid (PFDA)                    | 335-76-2   | 0.0002        | mg/kg          | <0.0002           | 0.0006            | <0.0002           | <br> |
| Perfluoroundecanoic acid (PFUnDA)                | 2058-94-8  | 0.0002        | mg/kg          | <0.0002           | 0.0006            | <0.0002           | <br> |
| Perfluorododecanoic acid (PFDoDA)                | 307-55-1   | 0.0002        | mg/kg          | <0.0002           | 0.0002            | <0.0002           | <br> |
| Perfluorotridecanoic acid (PFTrDA)               | 72629-94-8 | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <br> |
| Perfluorotetradecanoic acid (PFTeDA)             | 376-06-7   | 0.0005        | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <br> |
| P231C: Perfluoroalkyl Sulfonamides               |            |               |                |                   |                   |                   |      |
| Perfluorooctane sulfonamide (FOSA)               | 754-91-6   | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <br> |
| N-Methyl perfluorooctane<br>sulfonamide (MeFOSA) | 31506-32-8 | 0.0005        | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <br> |

: 4 of 9 : EB1921176-AJ Amendment 3 Work Order : AECOM Australia Pty Ltd : 60609758 Client

Project

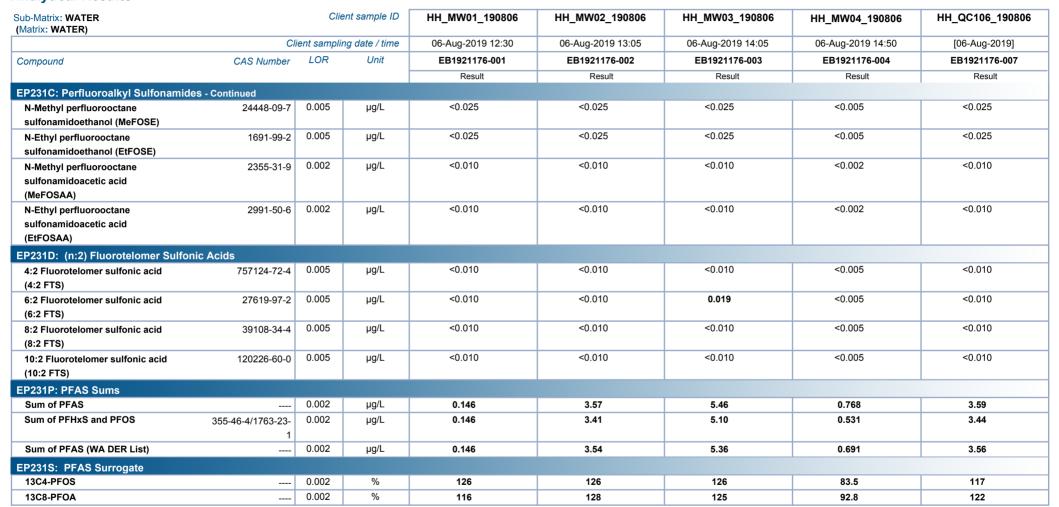

| Sub-Matrix: SOIL (Matrix: SOIL)                 |                        | Clie         | ent sample ID  | HH_SED01_190806   | HH_SED02_190806   | HH_QC107_190806   | <br>  |
|-------------------------------------------------|------------------------|--------------|----------------|-------------------|-------------------|-------------------|-------|
| (Matrix: GGIL)                                  | Ci                     | lient sampli | ng date / time | 06-Aug-2019 15:30 | 06-Aug-2019 15:45 | 06-Aug-2019 00:00 | <br>  |
| Compound                                        | CAS Number             | LOR          | Unit           | EB1921176-005     | EB1921176-006     | EB1921176-008     | <br>  |
| ·                                               |                        |              |                | Result            | Result            | Result            | <br>  |
| EP231C: Perfluoroalkyl Sulfonamid               | es - Continued         |              |                |                   |                   |                   |       |
| N-Ethyl perfluorooctane                         | 4151-50-2              | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <br>  |
| sulfonamide (EtFOSA)                            |                        |              |                |                   |                   |                   |       |
| N-Methyl perfluorooctane                        | 24448-09-7             | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <br>  |
| sulfonamidoethanol (MeFOSE)                     |                        |              |                |                   |                   |                   |       |
| N-Ethyl perfluorooctane                         | 1691-99-2              | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <br>  |
| sulfonamidoethanol (EtFOSE)                     | 0055 04 0              | 0.0002       | ma/ka          | <0.0002           | <0.0002           | <0.0002           |       |
| N-Methyl perfluorooctane sulfonamidoacetic acid | 2355-31-9              | 0.0002       | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <br>  |
| (MeFOSAA)                                       |                        |              |                |                   |                   |                   |       |
| N-Ethyl perfluorooctane                         | 2991-50-6              | 0.0002       | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <br>  |
| sulfonamidoacetic acid                          | 2301 00 0              |              | 99             |                   |                   |                   |       |
| (EtFOSAA)                                       |                        |              |                |                   |                   |                   |       |
| EP231D: (n:2) Fluorotelomer Sulfor              | nic Acids              |              |                |                   |                   |                   |       |
| 4:2 Fluorotelomer sulfonic acid                 | 757124-72-4            | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <br>  |
| (4:2 FTS)                                       |                        |              |                |                   |                   |                   |       |
| 6:2 Fluorotelomer sulfonic acid                 | 27619-97-2             | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <br>  |
| (6:2 FTS)                                       |                        |              |                |                   |                   |                   |       |
| 8:2 Fluorotelomer sulfonic acid                 | 39108-34-4             | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <br>  |
| (8:2 FTS)                                       |                        | 0.0005       |                | ·0.0005           | -0.0005           | -0.000F           |       |
| 10:2 Fluorotelomer sulfonic acid                | 120226-60-0            | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <br>  |
| (10:2 FTS)                                      |                        |              |                |                   |                   |                   |       |
| EP231P: PFAS Sums Sum of PFAS                   |                        | 0.0002       | ma/ka          | 0.0021            | 0.0030            | 0.0014            | <br>I |
| Sum of PFHxS and PFOS                           | 255 46 4/4762 22       | 0.0002       | mg/kg<br>mg/kg | 0.0021            | 0.0030            | 0.0014            |       |
| Sum of Prinxs and Pros                          | 355-46-4/1763-23-<br>1 | 0.0002       | ilig/kg        | 0.0021            | 0.0004            | 0.0014            | <br>  |
| Sum of PFAS (WA DER List)                       |                        | 0.0002       | mg/kg          | 0.0021            | 0.0011            | 0.0014            | <br>  |
| EP231S: PFAS Surrogate                          |                        |              |                |                   |                   | <u> </u>          |       |
| 13C4-PFOS                                       |                        | 0.0002       | %              | 93.5              | 91.5              | 67.5              | <br>  |
| 13C8-PFOA                                       |                        | 0.0002       | %              | 102               | 90.0              | 79.0              | <br>  |
|                                                 |                        |              |                |                   |                   |                   |       |

Page : 5 of 9

Work Order : EB1921176-AJ Amendment 3
Client : AECOM Australia Pty Ltd

Project : 60609758








Page : 6 of 9

Work Order : EB1921176-AJ Amendment 3
Client : AECOM Australia Pty Ltd

Project : 60609758





: 7 of 9 : EB1921176-AJ Amendment 3 Work Order : AECOM Australia Pty Ltd : 60609758 Client

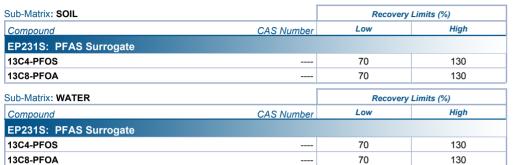
Project



| Sub-Matrix: WATER<br>(Matrix: WATER)             |            | Clie         | nt sample ID   | HH_QC303_190806   | <br> | <br> |
|--------------------------------------------------|------------|--------------|----------------|-------------------|------|------|
| ·                                                | CI         | ient samplir | ng date / time | 06-Aug-2019 00:00 | <br> | <br> |
| Compound                                         | CAS Number | LOR          | Unit           | EB1921176-009     | <br> | <br> |
| •                                                |            |              |                | Result            | <br> | <br> |
| EP231A: Perfluoroalkyl Sulfonic Acids            |            |              |                |                   |      |      |
| Perfluorobutane sulfonic acid                    | 375-73-5   | 0.002        | μg/L           | <0.002            | <br> | <br> |
| (PFBS)                                           |            |              |                |                   |      |      |
| Perfluoropentane sulfonic acid (PFPeS)           | 2706-91-4  | 0.002        | μg/L           | <0.002            | <br> | <br> |
| Perfluorohexane sulfonic acid (PFHxS)            | 355-46-4   | 0.002        | μg/L           | <0.002            | <br> | <br> |
| Perfluoroheptane sulfonic acid (PFHpS)           | 375-92-8   | 0.002        | μg/L           | <0.002            | <br> | <br> |
| Perfluorooctane sulfonic acid (PFOS)             | 1763-23-1  | 0.002        | μg/L           | <0.002            | <br> | <br> |
| Perfluorodecane sulfonic acid (PFDS)             | 335-77-3   | 0.002        | μg/L           | <0.002            | <br> | <br> |
| EP231B: Perfluoroalkyl Carboxylic Acid           | s          |              |                |                   |      |      |
| Perfluorobutanoic acid (PFBA)                    | 375-22-4   | 0.01         | μg/L           | <0.01             | <br> | <br> |
| Perfluoropentanoic acid (PFPeA)                  | 2706-90-3  | 0.002        | μg/L           | <0.002            | <br> | <br> |
| Perfluorohexanoic acid (PFHxA)                   | 307-24-4   | 0.002        | μg/L           | <0.002            | <br> | <br> |
| Perfluoroheptanoic acid (PFHpA)                  | 375-85-9   |              | μg/L           | <0.002            | <br> | <br> |
| Perfluorooctanoic acid (PFOA)                    | 335-67-1   | 0.002        | μg/L           | <0.002            | <br> | <br> |
| Perfluorononanoic acid (PFNA)                    | 375-95-1   | 0.002        | μg/L           | <0.002            | <br> | <br> |
| Perfluorodecanoic acid (PFDA)                    | 335-76-2   | 0.002        | μg/L           | <0.002            | <br> | <br> |
| Perfluoroundecanoic acid (PFUnDA)                | 2058-94-8  | 0.002        | μg/L           | <0.002            | <br> | <br> |
| Perfluorododecanoic acid (PFDoDA)                | 307-55-1   | 0.002        | μg/L           | <0.002            | <br> | <br> |
| Perfluorotridecanoic acid (PFTrDA)               | 72629-94-8 | 0.002        | μg/L           | <0.002            | <br> | <br> |
| Perfluorotetradecanoic acid (PFTeDA)             | 376-06-7   | 0.005        | μg/L           | <0.005            | <br> | <br> |
| EP231C: Perfluoroalkyl Sulfonamides              |            |              |                |                   |      |      |
| Perfluorooctane sulfonamide (FOSA)               | 754-91-6   | 0.002        | μg/L           | <0.002            | <br> | <br> |
| N-Methyl perfluorooctane<br>sulfonamide (MeFOSA) | 31506-32-8 | 0.005        | μg/L           | <0.005            | <br> | <br> |
| N-Ethyl perfluorooctane sulfonamide (EtFOSA)     | 4151-50-2  | 0.005        | μg/L           | <0.005            | <br> | <br> |

: 8 of 9 : EB1921176-AJ Amendment 3 Work Order : AECOM Australia Pty Ltd : 60609758 Client

Project


| Sub-Matrix: WATER<br>(Matrix: WATER)       |                        | Clie         | ent sample ID  | HH_QC303_190806   | <br> | <br> |
|--------------------------------------------|------------------------|--------------|----------------|-------------------|------|------|
|                                            | Cli                    | ient samplii | ng date / time | 06-Aug-2019 00:00 | <br> | <br> |
| Compound                                   | CAS Number             | LOR          | Unit           | EB1921176-009     | <br> | <br> |
|                                            |                        |              |                | Result            | <br> | <br> |
| <b>EP231C: Perfluoroalkyl Sulfonamides</b> | - Continued            |              |                |                   |      |      |
| N-Methyl perfluorooctane                   | 24448-09-7             | 0.005        | μg/L           | <0.005            | <br> | <br> |
| sulfonamidoethanol (MeFOSE)                |                        |              |                |                   |      |      |
| N-Ethyl perfluorooctane                    | 1691-99-2              | 0.005        | μg/L           | <0.005            | <br> | <br> |
| sulfonamidoethanol (EtFOSE)                |                        |              |                |                   |      |      |
| N-Methyl perfluorooctane                   | 2355-31-9              | 0.002        | μg/L           | <0.002            | <br> | <br> |
| sulfonamidoacetic acid                     |                        |              |                |                   |      |      |
| (MeFOSAA)                                  |                        |              |                |                   |      |      |
| N-Ethyl perfluorooctane                    | 2991-50-6              | 0.002        | μg/L           | <0.002            | <br> | <br> |
| sulfonamidoacetic acid                     |                        |              |                |                   |      |      |
| (EtFOSAA)                                  |                        |              |                |                   |      |      |
| EP231D: (n:2) Fluorotelomer Sulfonio       |                        |              |                |                   |      |      |
| 4:2 Fluorotelomer sulfonic acid            | 757124-72-4            | 0.005        | μg/L           | <0.005            | <br> | <br> |
| (4:2 FTS)                                  |                        |              |                |                   |      |      |
| 6:2 Fluorotelomer sulfonic acid            | 27619-97-2             | 0.005        | μg/L           | <0.005            | <br> | <br> |
| (6:2 FTS)                                  |                        |              |                |                   |      |      |
| 8:2 Fluorotelomer sulfonic acid            | 39108-34-4             | 0.005        | μg/L           | <0.005            | <br> | <br> |
| (8:2 FTS)                                  |                        |              |                |                   |      |      |
| 10:2 Fluorotelomer sulfonic acid           | 120226-60-0            | 0.005        | μg/L           | <0.005            | <br> | <br> |
| (10:2 FTS)                                 |                        |              |                |                   |      |      |
| EP231P: PFAS Sums                          |                        |              |                |                   |      |      |
| Sum of PFAS                                |                        | 0.002        | μg/L           | <0.002            | <br> | <br> |
| Sum of PFHxS and PFOS                      | 355-46-4/1763-23-<br>1 | 0.002        | μg/L           | <0.002            | <br> | <br> |
| Sum of PFAS (WA DER List)                  |                        | 0.002        | μg/L           | <0.002            | <br> | <br> |
| EP231S: PFAS Surrogate                     |                        |              |                |                   |      |      |
| 13C4-PFOS                                  |                        | 0.002        | %              | 82.0              | <br> | <br> |
| 13C8-PFOA                                  |                        | 0.002        | %              | 89.7              | <br> | <br> |

Page : 9 of 9

Work Order : EB1921176-AJ Amendment 3
Client : AECOM Australia Pty Ltd

Project : 60609758

# **Surrogate Control Limits**







### **QUALITY CONTROL REPORT**

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

**Work Order** : **EB1921176-AJ** Page : 1 of 11

Amendment : 3

Client : AECOM Australia Pty Ltd Laboratory : Environmental Division Brisbane

Contact : MR JAMES PEACHEY Contact : Carsten Emrich

Address : 2 Byth Street Stafford QLD Australia 4053

Brisbane

 Telephone
 : +61 07 3553 2000
 Telephone
 : +61 7 3552 8616

 Project
 : 60609758
 Date Samples Received
 : 13-Aug-2019

Order number : 60609758 2.0 Date Analysis Commenced : 15-Aug-2019

C-O-C number : ---- Issue Date : 04-Sep-2019

Sampler : NK
Site : OFES Home Hill

No. of samples received : 9
No. of samples analysed : 9

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

: BN/112/19

#### Signatories

Quote number

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Diana Mesa 2IC Organic Chemist Brisbane Organics, Stafford, QLD Kim McCabe Senior Inorganic Chemist Brisbane Inorganics, Stafford, QLD

Page : 2 of 11

Work Order : EB1921176-AJ Amendment 3
Client : AECOM Australia Pty Ltd

Project : 60609758



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: SOIL     |                            |                                                |            |        |       | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|----------------------------|------------------------------------------------|------------|--------|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID           | Method: Compound                               | CAS Number | LOR    | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EA055: Moisture Co   | ntent (Dried @ 105-110°C)  | (QC Lot: 2524697)                              |            |        |       |                 |                        |         |                     |
| EB1921176-005        | HH_SED01_190806            | EA055: Moisture Content                        |            | 0.1    | %     | 8.5             | 8.3                    | 2.98    | 0% - 20%            |
| EB1921176-030        | Anonymous                  | EA055: Moisture Content                        |            | 0.1    | %     | 16.8            | 16.9                   | 0.695   | 0% - 20%            |
| EP231A: Perfluoroa   | lkyl Sulfonic Acids (QC L  | ot: 2524688)                                   |            |        |       |                 |                        |         |                     |
| EB1921176-005        | HH_SED01_190806            | EP231X: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4  | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1  | 0.0002 | mg/kg | 0.0021          | 0.0015                 | 35.7    | 0% - 50%            |
|                      |                            | EP231X: Perfluorodecane sulfonic acid (PFDS)   | 335-77-3   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
| EB1921176-030        | Anonymous                  | EP231X: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4  | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1  | 0.0002 | mg/kg | 0.0013          | # 0.0022               | 54.0    | 0% - 50%            |
|                      |                            | EP231X: Perfluorodecane sulfonic acid (PFDS)   | 335-77-3   | 0.0002 | mg/kg | 0.0004          | 0.0007                 | 46.9    | No Limit            |
| EP231B: Perfluoro    | alkyl Carboxylic Acids (Q0 | C Lot: 2524688)                                |            |        |       |                 |                        |         |                     |
| EB1921176-005        | HH_SED01_190806            | EP231X: Perfluoropentanoic acid (PFPeA)        | 2706-90-3  | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorohexanoic acid (PFHxA)         | 307-24-4   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluoroheptanoic acid (PFHpA)        | 375-85-9   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorooctanoic acid (PFOA)          | 335-67-1   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorononanoic acid (PFNA)          | 375-95-1   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorodecanoic acid (PFDA)          | 335-76-2   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluoroundecanoic acid (PFUnDA)      | 2058-94-8  | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorododecanoic acid (PFDoDA)      | 307-55-1   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |

Page : 3 of 11

Work Order : EB1921176-AJ Amendment 3
Client : AECOM Australia Pty Ltd

Project : 60609758



| Sub-Matrix: SOIL     |                            |                                                                  |                       |        |        | Laboratory I       | Duplicate (DUP) Report |         |                     |
|----------------------|----------------------------|------------------------------------------------------------------|-----------------------|--------|--------|--------------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID           | Method: Compound                                                 | CAS Number            | LOR    | Unit   | Original Result    | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231B: Perfluoroa   | alkyl Carboxylic Acids (QC | Lot: 2524688) - continued                                        |                       |        |        |                    |                        |         |                     |
| EB1921176-005        | HH_SED01_190806            | EP231X: Perfluorotridecanoic acid (PFTrDA)                       | 72629-94-8            | 0.0002 | mg/kg  | <0.0002            | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorotetradecanoic acid (PFTeDA)                     | 376-06-7              | 0.0005 | mg/kg  | <0.0005            | <0.0005                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorobutanoic acid (PFBA)                            | 375-22-4              | 0.001  | mg/kg  | <0.001             | <0.001                 | 0.00    | No Limit            |
| EB1921176-030        | Anonymous                  | EP231X: Perfluoropentanoic acid (PFPeA)                          | 2706-90-3             | 0.0002 | mg/kg  | <0.0002            | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorohexanoic acid (PFHxA)                           | 307-24-4              | 0.0002 | mg/kg  | <0.0002            | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluoroheptanoic acid (PFHpA)                          | 375-85-9              | 0.0002 | mg/kg  | <0.0002            | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorooctanoic acid (PFOA)                            | 335-67-1              | 0.0002 | mg/kg  | <0.0002            | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorononanoic acid (PFNA)                            | 375-95-1              | 0.0002 | mg/kg  | <0.0002            | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorodecanoic acid (PFDA)                            | 335-76-2              | 0.0002 | mg/kg  | <0.0002            | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluoroundecanoic acid (PFUnDA)                        | 2058-94-8             | 0.0002 | mg/kg  | 0.0006             | 0.0009                 | 45.5    | No Limit            |
|                      |                            | EP231X: Perfluorododecanoic acid (PFDoDA)                        | 307-55-1              | 0.0002 | mg/kg  | <0.0002            | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorotridecanoic acid (PFTrDA)                       | 72629-94-8            | 0.0002 | mg/kg  | 0.0008             | 0.0015                 | 53.7    | No Limit            |
|                      |                            | EP231X: Perfluorotetradecanoic acid (PFTeDA)                     | 376-06-7              | 0.0005 | mg/kg  | <0.0005            | <0.0005                | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorobutanoic acid (PFBA)                            | 375-22-4              | 0.001  | mg/kg  | <0.001             | <0.001                 | 0.00    | No Limit            |
| EP231C: Perfluoroa   | lkyl Sulfonamides (QC Lot  | : 2524688)                                                       |                       |        |        |                    |                        |         |                     |
| EB1921176-005        | HH_SED01_190806            | EP231X: Perfluorooctane sulfonamide (FOSA)                       | 754-91-6              | 0.0002 | mg/kg  | <0.0002            | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: N-Methyl perfluorooctane                                 | 2355-31-9             | 0.0002 | mg/kg  | <0.0002            | <0.0002                | 0.00    | No Limit            |
|                      |                            | sulfonamidoacetic acid (MeFOSAA)                                 |                       |        |        |                    |                        |         |                     |
|                      |                            | EP231X: N-Ethyl perfluorooctane                                  | 2991-50-6             | 0.0002 | mg/kg  | <0.0002            | <0.0002                | 0.00    | No Limit            |
|                      |                            | sulfonamidoacetic acid (EtFOSAA)                                 |                       |        |        |                    |                        |         |                     |
|                      |                            | EP231X: N-Methyl perfluorooctane sulfonamide                     | 31506-32-8            | 0.0005 | mg/kg  | <0.0005            | <0.0005                | 0.00    | No Limit            |
|                      |                            | (MeFOSA)                                                         |                       |        |        |                    |                        |         |                     |
|                      |                            | EP231X: N-Ethyl perfluorooctane sulfonamide                      | 4151-50-2             | 0.0005 | mg/kg  | <0.0005            | <0.0005                | 0.00    | No Limit            |
|                      |                            | (EtFOSA)                                                         |                       |        |        |                    |                        |         |                     |
|                      |                            | EP231X: N-Methyl perfluorooctane                                 | 24448-09-7            | 0.0005 | mg/kg  | <0.0005            | <0.0005                | 0.00    | No Limit            |
|                      |                            | sulfonamidoethanol (MeFOSE)                                      | 4004.00.0             | 0.000# | ,,     | 0.000              | 0.0005                 |         | N. 1. "             |
|                      |                            | EP231X: N-Ethyl perfluorooctane                                  | 1691-99-2             | 0.0005 | mg/kg  | <0.0005            | <0.0005                | 0.00    | No Limit            |
| EB1921176-030        | Ananymaya                  | sulfonamidoethanol (EtFOSE)                                      | 754.04.6              | 0.0000 | ma/lea | <0.0002            | <0.0000                | 0.00    | No Limit            |
| EB1921170-030        | Anonymous                  | EP231X: Perfluorooctane sulfonamide (FOSA)                       | 754-91-6<br>2355-31-9 | 0.0002 | mg/kg  | <0.0002<br><0.0002 | <0.0002<br><0.0002     | 0.00    |                     |
|                      |                            | EP231X: N-Methyl perfluorooctane                                 | 2300-31-9             | 0.0002 | mg/kg  | <0.0002            | <0.0002                | 0.00    | No Limit            |
|                      |                            | sulfonamidoacetic acid (MeFOSAA)                                 | 2991-50-6             | 0.0002 | mg/kg  | <0.0002            | <0.0002                | 0.00    | No Limit            |
|                      |                            | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-30-0             | 0.0002 | mg/kg  | V0.0002            | \0.000Z                | 0.00    | 140 Littiit         |
|                      |                            | EP231X: N-Methyl perfluorooctane sulfonamide                     | 31506-32-8            | 0.0005 | mg/kg  | <0.0005            | <0.0005                | 0.00    | No Limit            |
|                      |                            | (MeFOSA)                                                         | 0.000 02 0            | 0.000  | 99     | 0.000              | 0.000                  | 0.00    | . 10 2              |
|                      |                            | EP231X: N-Ethyl perfluorooctane sulfonamide                      | 4151-50-2             | 0.0005 | mg/kg  | <0.0005            | <0.0005                | 0.00    | No Limit            |
|                      |                            | (EtFOSA)                                                         |                       |        | 3 3    |                    |                        |         |                     |
|                      |                            | EP231X: N-Methyl perfluorooctane                                 | 24448-09-7            | 0.0005 | mg/kg  | <0.0005            | <0.0005                | 0.00    | No Limit            |
|                      |                            | sulfonamidoethanol (MeFOSE)                                      |                       |        |        |                    |                        |         |                     |
|                      |                            | EP231X: N-Ethyl perfluorooctane                                  | 1691-99-2             | 0.0005 | mg/kg  | <0.0005            | <0.0005                | 0.00    | No Limit            |
|                      |                            | sulfonamidoethanol (EtFOSE)                                      |                       |        |        |                    |                        |         |                     |

Page : 4 of 11

Work Order : EB1921176-AJ Amendment 3
Client : AECOM Australia Pty Ltd

Project : 60609758



| Sub-Matrix: SOIL     |                           |                                                     |             |                                   |       | Laboratory I    | Duplicate (DUP) Report |         |                     |  |  |
|----------------------|---------------------------|-----------------------------------------------------|-------------|-----------------------------------|-------|-----------------|------------------------|---------|---------------------|--|--|
| Laboratory sample ID | Client sample ID          | Method: Compound                                    | CAS Number  | LOR                               | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |  |  |
| EP231D: (n:2) Fluo   | rotelomer Sulfonic Acids  | (QC Lot: 2524688)                                   |             |                                   |       |                 |                        |         |                     |  |  |
| EB1921176-005        | HH_SED01_190806           | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.0005                            | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |  |  |
|                      |                           | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.0005                            | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |  |  |
|                      |                           | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.0005                            | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |  |  |
|                      |                           | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.0005                            | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |  |  |
| EB1921176-030        | Anonymous                 | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.0005                            | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |  |  |
|                      |                           | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.0005                            | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |  |  |
|                      |                           | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.0005                            | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |  |  |
|                      |                           | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.0005                            | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |  |  |
| Sub-Matrix: WATER    |                           |                                                     |             | Laboratory Duplicate (DUP) Report |       |                 |                        |         |                     |  |  |
| Laboratory sample ID | Client sample ID          | Method: Compound                                    | CAS Number  | LOR                               | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |  |  |
|                      | Ikyl Sulfonic Acids (QC I |                                                     |             |                                   |       |                 |                        | , ,     |                     |  |  |
| EB1921176-001        | HH MW01 190806            | EP231X-LL: Perfluorobutane sulfonic acid (PFBS)     | 375-73-5    | 0.002                             | μg/L  | <0.010          | <0.010                 | 0.00    | No Limit            |  |  |
|                      |                           | EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)   | 2706-91-4   | 0.002                             | μg/L  | <0.010          | 0.010                  | 0.00    | No Limit            |  |  |
|                      |                           | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)    | 355-46-4    | 0.002                             | μg/L  | 0.090           | 0.083                  | 8.09    | No Limit            |  |  |
|                      |                           | EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)   | 375-92-8    | 0.002                             | μg/L  | <0.010          | <0.010                 | 0.00    | No Limit            |  |  |
|                      |                           | EP231X-LL: Perfluorooctane sulfonic acid (PFOS)     | 1763-23-1   | 0.002                             | μg/L  | 0.056           | 0.031                  | 57.5    | No Limit            |  |  |
|                      |                           | EP231X-LL: Perfluorodecane sulfonic acid (PFDS)     | 335-77-3    | 0.002                             | μg/L  | <0.010          | <0.010                 | 0.00    | No Limit            |  |  |
| EB1921176-020        | Anonymous                 | EP231X-LL: Perfluorobutane sulfonic acid (PFBS)     | 375-73-5    | 0.002                             | μg/L  | <0.100          | <0.100                 | 0.00    | No Limit            |  |  |
|                      |                           | EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)   | 2706-91-4   | 0.002                             | μg/L  | <0.100          | <0.100                 | 0.00    | No Limit            |  |  |
|                      |                           | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)    | 355-46-4    | 0.002                             | μg/L  | 4.22            | 4.05                   | 4.11    | 0% - 20%            |  |  |
|                      |                           | EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)   | 375-92-8    | 0.002                             | μg/L  | 0.250           | 0.300                  | 18.2    | No Limit            |  |  |
|                      |                           | EP231X-LL: Perfluorooctane sulfonic acid (PFOS)     | 1763-23-1   | 0.002                             | μg/L  | 59.9            | # 47.1                 | 23.9    | 0% - 20%            |  |  |
|                      |                           | EP231X-LL: Perfluorodecane sulfonic acid (PFDS)     | 335-77-3    | 0.002                             | μg/L  | <0.100          | <0.100                 | 0.00    | No Limit            |  |  |

: 5 of 11 : EB1921176-AJ Amendment 3 Work Order Client : AECOM Australia Pty Ltd

Project : 60609758



| Sub-Matrix: WATER    |                           |                                                                      |            |       |        | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|---------------------------|----------------------------------------------------------------------|------------|-------|--------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID          | Method: Compound                                                     | CAS Number | LOR   | Unit   | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231B: Perfluoroa   | alkyl Carboxylic Acids (( |                                                                      |            |       |        |                 |                        |         |                     |
| EB1921176-001        | HH_MW01_190806            | EP231X-LL: Perfluoropentanoic acid (PFPeA)                           | 2706-90-3  | 0.002 | μg/L   | <0.010          | <0.010                 | 0.00    | No Limit            |
|                      |                           | EP231X-LL: Perfluorohexanoic acid (PFHxA)                            | 307-24-4   | 0.002 | μg/L   | <0.010          | <0.010                 | 0.00    | No Limit            |
|                      |                           | EP231X-LL: Perfluoroheptanoic acid (PFHpA)                           | 375-85-9   | 0.002 | μg/L   | <0.010          | <0.010                 | 0.00    | No Limit            |
|                      |                           | EP231X-LL: Perfluorooctanoic acid (PFOA)                             | 335-67-1   | 0.002 | μg/L   | <0.010          | <0.010                 | 0.00    | No Limit            |
|                      |                           | EP231X-LL: Perfluorononanoic acid (PFNA)                             | 375-95-1   | 0.002 | μg/L   | <0.010          | <0.010                 | 0.00    | No Limit            |
|                      |                           | EP231X-LL: Perfluorodecanoic acid (PFDA)                             | 335-76-2   | 0.002 | μg/L   | <0.010          | <0.010                 | 0.00    | No Limit            |
|                      |                           | EP231X-LL: Perfluoroundecanoic acid (PFUnDA)                         | 2058-94-8  | 0.002 | μg/L   | <0.010          | <0.010                 | 0.00    | No Limit            |
|                      |                           | EP231X-LL: Perfluorododecanoic acid (PFDoDA)                         | 307-55-1   | 0.002 | μg/L   | <0.010          | <0.010                 | 0.00    | No Limit            |
|                      |                           | EP231X-LL: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8 | 0.002 | μg/L   | <0.010          | <0.010                 | 0.00    | No Limit            |
|                      |                           | EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7   | 0.005 | μg/L   | <0.025          | <0.025                 | 0.00    | No Limit            |
|                      |                           | EP231X-LL: Perfluorobutanoic acid (PFBA)                             | 375-22-4   | 0.01  | μg/L   | <0.05           | <0.05                  | 0.00    | No Limit            |
| EB1921176-020        | Anonymous                 | EP231X-LL: Perfluoropentanoic acid (PFPeA)                           | 2706-90-3  | 0.002 | μg/L   | 0.260           | 0.260                  | 0.00    | No Limit            |
|                      |                           | EP231X-LL: Perfluorohexanoic acid (PFHxA)                            | 307-24-4   | 0.002 | μg/L   | 0.380           | 0.340                  | 11.1    | No Limit            |
|                      |                           | EP231X-LL: Perfluoroheptanoic acid (PFHpA)                           | 375-85-9   | 0.002 | μg/L   | 0.610           | 0.550                  | 10.3    | No Limit            |
|                      |                           | EP231X-LL: Perfluorooctanoic acid (PFOA)                             | 335-67-1   | 0.002 | μg/L   | 0.930           | 0.880                  | 5.52    | No Limit            |
|                      |                           | EP231X-LL: Perfluorononanoic acid (PFNA)                             | 375-95-1   | 0.002 | μg/L   | 0.110           | 0.130                  | 16.7    | No Limit            |
|                      |                           | EP231X-LL: Perfluorodecanoic acid (PFDA)                             | 335-76-2   | 0.002 | μg/L   | <0.100          | <0.100                 | 0.00    | No Limit            |
|                      |                           | EP231X-LL: Perfluoroundecanoic acid (PFUnDA)                         | 2058-94-8  | 0.002 | μg/L   | <0.100          | <0.100                 | 0.00    | No Limit            |
|                      |                           | EP231X-LL: Perfluorododecanoic acid (PFDoDA)                         | 307-55-1   | 0.002 | μg/L   | <0.100          | <0.100                 | 0.00    | No Limit            |
|                      |                           | EP231X-LL: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8 | 0.002 | μg/L   | <0.100          | <0.100                 | 0.00    | No Limit            |
|                      |                           | EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7   | 0.005 | μg/L   | <0.250          | <0.250                 | 0.00    | No Limit            |
|                      |                           | EP231X-LL: Perfluorobutanoic acid (PFBA)                             | 375-22-4   | 0.01  | μg/L   | <0.50           | <0.50                  | 0.00    | No Limit            |
| EP231C: Perfluoroa   | lkyl Sulfonamides (QC L   | ot: 2524698)                                                         |            |       | -      |                 |                        |         |                     |
| EB1921176-001        | HH MW01 190806            | EP231X-LL: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6   | 0.002 | μg/L   | <0.010          | <0.010                 | 0.00    | No Limit            |
|                      |                           | EP231X-LL: N-Methyl perfluorooctane                                  | 2355-31-9  | 0.002 | µg/L   | <0.010          | <0.010                 | 0.00    | No Limit            |
|                      |                           | sulfonamidoacetic acid (MeFOSAA)                                     |            |       | P-3· - |                 |                        |         |                     |
|                      |                           | EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6  | 0.002 | μg/L   | <0.010          | <0.010                 | 0.00    | No Limit            |
|                      |                           | EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8 | 0.005 | μg/L   | <0.025          | <0.025                 | 0.00    | No Limit            |
|                      |                           | EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2  | 0.005 | μg/L   | <0.025          | <0.025                 | 0.00    | No Limit            |
|                      |                           | EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7 | 0.005 | μg/L   | <0.025          | <0.025                 | 0.00    | No Limit            |
|                      |                           | EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2  | 0.005 | μg/L   | <0.025          | <0.025                 | 0.00    | No Limit            |
| EB1921176-020        | Anonymous                 | EP231X-LL: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6   | 0.002 | μg/L   | <0.100          | <0.100                 | 0.00    | No Limit            |
|                      | ,                         | EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9  | 0.002 | μg/L   | <0.100          | <0.100                 | 0.00    | No Limit            |

Page : 6 of 11

Work Order : EB1921176-AJ Amendment 3
Client : AECOM Australia Pty Ltd

Project : 60609758



| Sub-Matrix: WATER    |                          |                                                                     |                        |       |      | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|--------------------------|---------------------------------------------------------------------|------------------------|-------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID         | Method: Compound                                                    | CAS Number             | LOR   | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231C: Perfluoroa   | lkyl Sulfonamides (QC    | Lot: 2524698) - continued                                           |                        |       |      |                 |                        |         |                     |
| EB1921176-020        | Anonymous                | EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) | 2991-50-6              | 0.002 | μg/L | <0.100          | <0.100                 | 0.00    | No Limit            |
|                      |                          | EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)            | 31506-32-8             | 0.005 | μg/L | <0.250          | <0.250                 | 0.00    | No Limit            |
|                      |                          | EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)             | 4151-50-2              | 0.005 | μg/L | <0.250          | <0.250                 | 0.00    | No Limit            |
|                      |                          | EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)     | 24448-09-7             | 0.005 | μg/L | <0.250          | <0.250                 | 0.00    | No Limit            |
|                      |                          | EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)      | 1691-99-2              | 0.005 | μg/L | <0.250          | <0.250                 | 0.00    | No Limit            |
| EP231D: (n:2) Fluo   | rotelomer Sulfonic Acids | s (QC Lot: 2524698)                                                 |                        |       |      |                 |                        |         |                     |
| EB1921176-001        | HH_MW01_190806           | EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                | 757124-72-4            | 0.005 | μg/L | <0.010          | <0.010                 | 0.00    | No Limit            |
|                      |                          | EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                | 27619-97-2             | 0.005 | μg/L | <0.010          | <0.010                 | 0.00    | No Limit            |
|                      |                          | EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                | 39108-34-4             | 0.005 | μg/L | <0.010          | <0.010                 | 0.00    | No Limit            |
|                      |                          | EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)              | 120226-60-0            | 0.005 | μg/L | <0.010          | <0.010                 | 0.00    | No Limit            |
| EB1921176-020        | Anonymous                | EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                | 757124-72-4            | 0.005 | μg/L | <0.100          | <0.100                 | 0.00    | No Limit            |
|                      |                          | EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                | 27619-97-2             | 0.005 | μg/L | 1.35            | 1.37                   | 1.47    | 0% - 50%            |
|                      |                          | EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                | 39108-34-4             | 0.005 | μg/L | <0.100          | <0.100                 | 0.00    | No Limit            |
|                      |                          | EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)              | 120226-60-0            | 0.005 | μg/L | <0.100          | <0.100                 | 0.00    | No Limit            |
| EP231P: PFAS Sum     | s (QC Lot: 2524698)      |                                                                     |                        |       |      |                 |                        |         |                     |
| EB1921176-001        | HH_MW01_190806           | EP231X-LL: Sum of PFAS                                              |                        | 0.002 | μg/L | 0.146           | 0.124                  | 16.3    | 0% - 50%            |
|                      |                          | EP231X-LL: Sum of PFHxS and PFOS                                    | 355-46-4/1763-<br>23-1 | 0.002 | μg/L | 0.146           | 0.114                  | 24.6    | 0% - 50%            |
|                      |                          | EP231X-LL: Sum of PFAS (WA DER List)                                |                        | 0.002 | μg/L | 0.146           | 0.114                  | 24.6    | 0% - 50%            |
| EB1921176-020        | Anonymous                | EP231X-LL: Sum of PFAS                                              |                        | 0.002 | μg/L | 68.0            | # 55.0                 | 21.2    | 0% - 20%            |
|                      |                          | EP231X-LL: Sum of PFHxS and PFOS                                    | 355-46-4/1763-<br>23-1 | 0.002 | μg/L | 64.1            | # 51.2                 | 22.5    | 0% - 20%            |
|                      |                          | EP231X-LL: Sum of PFAS (WA DER List)                                |                        | 0.002 | μg/L | 67.6            | # 54.6                 | 21.4    | 0% - 20%            |

Page : 7 of 11

Work Order : EB1921176-AJ Amendment 3
Client · AECOM Australia Pty Ltd

Project : 60609758



# Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: SOIL                                                  |             |        |       | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|-------------------------------------------------------------------|-------------|--------|-------|-------------------|---------------|------------------------------|-----------|------------|
|                                                                   |             |        |       | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                                  | CAS Number  | LOR    | Unit  | Result            | Concentration | LCS                          | Low       | High       |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 252468              | 8)          |        |       |                   |               |                              |           |            |
| EP231X: Perfluorobutane sulfonic acid (PFBS)                      | 375-73-5    | 0.0002 | mg/kg | <0.0002           | 0.0011 mg/kg  | 93.2                         | 57        | 121        |
| EP231X: Perfluoropentane sulfonic acid (PFPeS)                    | 2706-91-4   | 0.0002 | mg/kg | <0.0002           | 0.00117 mg/kg | 92.7                         | 55        | 125        |
| EP231X: Perfluorohexane sulfonic acid (PFHxS)                     | 355-46-4    | 0.0002 | mg/kg | <0.0002           | 0.00118 mg/kg | 78.0                         | 52        | 126        |
| EP231X: Perfluoroheptane sulfonic acid (PFHpS)                    | 375-92-8    | 0.0002 | mg/kg | <0.0002           | 0.00119 mg/kg | 92.8                         | 54        | 123        |
| EP231X: Perfluorooctane sulfonic acid (PFOS)                      | 1763-23-1   | 0.0002 | mg/kg | <0.0002           | 0.00116 mg/kg | 77.6                         | 55        | 127        |
| EP231X: Perfluorodecane sulfonic acid (PFDS)                      | 335-77-3    | 0.0002 | mg/kg | <0.0002           | 0.0012 mg/kg  | 90.0                         | 54        | 125        |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 2524              | 4688)       |        |       |                   |               |                              |           |            |
| EP231X: Perfluorobutanoic acid (PFBA)                             | 375-22-4    | 0.001  | mg/kg | <0.001            | 0.00625 mg/kg | # 37.5                       | 52        | 128        |
| EP231X: Perfluoropentanoic acid (PFPeA)                           | 2706-90-3   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 73.6                         | 54        | 129        |
| EP231X: Perfluorohexanoic acid (PFHxA)                            | 307-24-4    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 92.0                         | 58        | 127        |
| EP231X: Perfluoroheptanoic acid (PFHpA)                           | 375-85-9    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 77.6                         | 57        | 128        |
| EP231X: Perfluorooctanoic acid (PFOA)                             | 335-67-1    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 78.8                         | 60        | 134        |
| EP231X: Perfluorononanoic acid (PFNA)                             | 375-95-1    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 78.8                         | 63        | 130        |
| EP231X: Perfluorodecanoic acid (PFDA)                             | 335-76-2    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 58.4                         | 55        | 130        |
| EP231X: Perfluoroundecanoic acid (PFUnDA)                         | 2058-94-8   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 77.2                         | 62        | 130        |
| EP231X: Perfluorododecanoic acid (PFDoDA)                         | 307-55-1    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 73.2                         | 53        | 134        |
| EP231X: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8  | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 60.0                         | 49        | 129        |
| EP231X: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7    | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg | 59.3                         | 59        | 129        |
| EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2524688               | 3)          |        |       |                   |               |                              |           |            |
| EP231X: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 78.4                         | 52        | 132        |
| EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8  | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg | # 54.5                       | 65        | 126        |
| EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2   | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg | # 45.4                       | 64        | 126        |
| EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7  | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg | # 35.2                       | 63        | 124        |
| EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2   | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg | # 48.1                       | 58        | 125        |
| EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 67.6                         | 61        | 130        |
| EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 62.4                         | 55        | 130        |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2              | 524688)     |        |       |                   |               |                              |           |            |
| EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | 757124-72-4 | 0.0005 | mg/kg | <0.0005           | 0.00116 mg/kg | 79.3                         | 54        | 130        |
| EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                 | 27619-97-2  | 0.0005 | mg/kg | <0.0005           | 0.00118 mg/kg | 74.2                         | 61        | 130        |
| EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                 | 39108-34-4  | 0.0005 | mg/kg | <0.0005           | 0.00119 mg/kg | 85.3                         | 62        | 130        |

: 8 of 11 : EB1921176-AJ Amendment 3 Work Order : AECOM Australia Pty Ltd Client

Project : 60609758



| Sub-Matrix: <b>SOIL</b>                                              |                    |        |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                               |           |            |  |
|----------------------------------------------------------------------|--------------------|--------|-------|-------------------|---------------------------------------|-------------------------------|-----------|------------|--|
|                                                                      |                    |        |       | Report            | Spike                                 | Spike Recovery (%)            | Recovery  | Limits (%) |  |
| Method: Compound                                                     | CAS Number         | LOR    | Unit  | Result            | Concentration                         | LCS                           | Low       | High       |  |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 25                | 524688) - continue | d      |       |                   |                                       |                               |           |            |  |
| EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                  | 120226-60-0        | 0.0005 | mg/kg | <0.0005           | 0.0012 mg/kg                          | 100                           | 60        | 130        |  |
| Sub-Matrix: WATER                                                    |                    |        |       | Method Blank (MB) |                                       | Laboratory Control Spike (LCS | S) Report |            |  |
|                                                                      |                    |        |       | Report            | Spike                                 | Spike Recovery (%)            | Recovery  | Limits (%) |  |
| Method: Compound                                                     | CAS Number         | LOR    | Unit  | Result            | Concentration                         | LCS                           | Low       | High       |  |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 2524698                | 3)                 |        |       |                   |                                       |                               |           |            |  |
| EP231X-LL: Perfluorobutane sulfonic acid (PFBS)                      | 375-73-5           | 0.002  | μg/L  | <0.002            | 0.0442 μg/L                           | 93.7                          | 50        | 130        |  |
| EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)                    | 2706-91-4          | 0.002  | μg/L  | <0.002            | 0.0469 μg/L                           | 99.1                          | 50        | 130        |  |
| EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)                     | 355-46-4           | 0.002  | μg/L  | <0.002            | 0.0473 μg/L                           | 85.2                          | 50        | 130        |  |
| EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)                    | 375-92-8           | 0.002  | μg/L  | <0.002            | 0.0476 μg/L                           | 93.5                          | 50        | 130        |  |
| EP231X-LL: Perfluorooctane sulfonic acid (PFOS)                      | 1763-23-1          | 0.002  | μg/L  | <0.002            | 0.0464 μg/L                           | 77.6                          | 50        | 130        |  |
| EP231X-LL: Perfluorodecane sulfonic acid (PFDS)                      | 335-77-3           | 0.002  | μg/L  | <0.002            | 0.0482 μg/L                           | 64.1                          | 40        | 130        |  |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 2524                 | 698)               |        |       |                   |                                       |                               |           |            |  |
| EP231X-LL: Perfluorobutanoic acid (PFBA)                             | 375-22-4           | 0.01   | μg/L  | <0.01             | 0.25 μg/L                             | 85.6                          | 50        | 130        |  |
| EP231X-LL: Perfluoropentanoic acid (PFPeA)                           | 2706-90-3          | 0.002  | μg/L  | <0.002            | 0.05 μg/L                             | 86.2                          | 50        | 130        |  |
| EP231X-LL: Perfluorohexanoic acid (PFHxA)                            | 307-24-4           | 0.002  | μg/L  | <0.002            | 0.05 μg/L                             | 91.2                          | 50        | 130        |  |
| EP231X-LL: Perfluoroheptanoic acid (PFHpA)                           | 375-85-9           | 0.002  | μg/L  | <0.002            | 0.05 μg/L                             | 90.6                          | 50        | 130        |  |
| EP231X-LL: Perfluorooctanoic acid (PFOA)                             | 335-67-1           | 0.002  | μg/L  | <0.002            | 0.05 μg/L                             | 88.0                          | 50        | 130        |  |
| EP231X-LL: Perfluorononanoic acid (PFNA)                             | 375-95-1           | 0.002  | μg/L  | <0.002            | 0.05 μg/L                             | 75.6                          | 50        | 130        |  |
| EP231X-LL: Perfluorodecanoic acid (PFDA)                             | 335-76-2           | 0.002  | μg/L  | <0.002            | 0.05 μg/L                             | 64.4                          | 50        | 130        |  |
| EP231X-LL: Perfluoroundecanoic acid (PFUnDA)                         | 2058-94-8          | 0.002  | μg/L  | <0.002            | 0.05 μg/L                             | 69.6                          | 40        | 130        |  |
| EP231X-LL: Perfluorododecanoic acid (PFDoDA)                         | 307-55-1           | 0.002  | μg/L  | <0.002            | 0.05 μg/L                             | 67.8                          | 40        | 130        |  |
| EP231X-LL: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8         | 0.002  | μg/L  | <0.002            | 0.05 μg/L                             | 61.8                          | 40        | 130        |  |
| EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7           | 0.005  | μg/L  | <0.005            | 0.125 μg/L                            | 79.3                          | 40        | 130        |  |
| EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2524698                  |                    |        |       |                   |                                       |                               |           |            |  |
| EP231X-LL: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6           | 0.002  | μg/L  | <0.002            | 0.05 μg/L                             | 81.8                          | 40        | 130        |  |
| EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8         | 0.005  | μg/L  | <0.005            | 0.125 μg/L                            | 88.2                          | 40        | 130        |  |
| EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2          | 0.005  | μg/L  | <0.005            | 0.125 μg/L                            | 57.3                          | 40        | 130        |  |
| EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7         | 0.005  | μg/L  | <0.005            | 0.125 μg/L                            | 57.3                          | 50        | 130        |  |
| EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2          | 0.005  | μg/L  | <0.005            | 0.125 μg/L                            | 60.6                          | 40        | 130        |  |
| EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9          | 0.002  | μg/L  | <0.002            | 0.05 μg/L                             | 53.4                          | 50        | 130        |  |
| EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6          | 0.002  | μg/L  | <0.002            | 0.05 μg/L                             | 51.2                          | 40        | 130        |  |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 25                | 524698)            |        |       |                   |                                       |                               |           |            |  |
| EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | 757124-72-4        | 0.005  | μg/L  | <0.005            | 0.0467 μg/L                           | 89.9                          | 50        | 130        |  |

Page : 9 of 11

Work Order : EB1921176-AJ Amendment 3
Client : AECOM Australia Pty Ltd

Project : 60609758



| Sub-Matrix: WATER                                      |                    |       |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |
|--------------------------------------------------------|--------------------|-------|------|-------------------|---------------------------------------|--------------------|----------|------------|--|
|                                                        |                    |       |      | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |
| Method: Compound                                       | CAS Number         | LOR   | Unit | Result            | Concentration                         | LCS                | Low      | High       |  |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot:     | 2524698) - continu | ed    |      |                   |                                       |                    |          |            |  |
| EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2         | 0.005 | μg/L | <0.005            | 0.0474 μg/L                           | 96.0               | 50       | 130        |  |
| EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4         | 0.005 | μg/L | <0.005            | 0.0479 μg/L                           | 72.0               | 50       | 130        |  |
| EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0        | 0.005 | μg/L | <0.005            | 0.0482 μg/L                           | 56.6               | 50       | 130        |  |
| EP231P: PFAS Sums (QCLot: 2524698)                     |                    |       |      |                   |                                       |                    |          |            |  |
| EP231X-LL: Sum of PFAS                                 |                    | 0.002 | μg/L | <0.002            |                                       |                    |          |            |  |
| EP231X-LL: Sum of PFHxS and PFOS                       | 355-46-4/17        | 0.002 | μg/L | <0.002            |                                       |                    |          |            |  |
|                                                        | 63-23-1            |       |      |                   |                                       |                    |          |            |  |
| EP231X-LL: Sum of PFAS (WA DER List)                   |                    | 0.002 | μg/L | <0.002            |                                       |                    |          |            |  |

# Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: SOIL    |                                        |                                                |            | Matrix Spike (MS) Report |                  |            |            |  |  |
|---------------------|----------------------------------------|------------------------------------------------|------------|--------------------------|------------------|------------|------------|--|--|
|                     |                                        |                                                |            | Spike                    | SpikeRecovery(%) | Recovery L | _imits (%) |  |  |
| aboratory sample ID | Client sample ID                       | Method: Compound                               | CAS Number | Concentration            | MS               | Low        | High       |  |  |
| EP231A: Perfluoro   | alkyl Sulfonic Acids (QCLot: 2524688)  |                                                |            |                          |                  |            |            |  |  |
| EB1921176-006       | HH_SED02_190806                        | EP231X: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5   | 0.00125 mg/kg            | 66.8             | 57         | 121        |  |  |
|                     |                                        | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4  | 0.00125 mg/kg            | 70.0             | 55         | 125        |  |  |
|                     |                                        | EP231X: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4   | 0.00125 mg/kg            | 54.4             | 52         | 126        |  |  |
|                     |                                        | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8   | 0.00125 mg/kg            | 70.0             | 54         | 123        |  |  |
|                     |                                        | EP231X: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1  | 0.00125 mg/kg            | # 37.3           | 55         | 127        |  |  |
|                     |                                        | EP231X: Perfluorodecane sulfonic acid (PFDS)   | 335-77-3   | 0.00125 mg/kg            | 54.0             | 54         | 125        |  |  |
| EP231B: Perfluor    | oalkyl Carboxylic Acids (QCLot: 252468 | 8)                                             |            |                          |                  |            |            |  |  |
| EB1921176-006 H     | HH_SED02_190806                        | EP231X: Perfluorobutanoic acid (PFBA)          | 375-22-4   | 0.00625 mg/kg            | # 26.1           | 52         | 128        |  |  |
|                     |                                        | EP231X: Perfluoropentanoic acid (PFPeA)        | 2706-90-3  | 0.00125 mg/kg            | 57.3             | 54         | 129        |  |  |
|                     |                                        | EP231X: Perfluorohexanoic acid (PFHxA)         | 307-24-4   | 0.00125 mg/kg            | 74.5             | 58         | 127        |  |  |
|                     |                                        | EP231X: Perfluoroheptanoic acid (PFHpA)        | 375-85-9   | 0.00125 mg/kg            | 60.9             | 57         | 128        |  |  |
|                     |                                        | EP231X: Perfluorooctanoic acid (PFOA)          | 335-67-1   | 0.00125 mg/kg            | 64.5             | 60         | 134        |  |  |
|                     |                                        | EP231X: Perfluorononanoic acid (PFNA)          | 375-95-1   | 0.00125 mg/kg            | # 62.2           | 63         | 130        |  |  |
|                     |                                        | EP231X: Perfluorodecanoic acid (PFDA)          | 335-76-2   | 0.00125 mg/kg            | # 37.0           | 55         | 130        |  |  |
|                     |                                        | EP231X: Perfluoroundecanoic acid (PFUnDA)      | 2058-94-8  | 0.00125 mg/kg            | # 51.8           | 62         | 130        |  |  |
|                     |                                        | EP231X: Perfluorododecanoic acid (PFDoDA)      | 307-55-1   | 0.00125 mg/kg            | # 51.3           | 53         | 134        |  |  |
|                     |                                        | EP231X: Perfluorotridecanoic acid (PFTrDA)     | 72629-94-8 | 0.00125 mg/kg            | # 41.6           | 49         | 129        |  |  |
|                     |                                        | EP231X: Perfluorotetradecanoic acid (PFTeDA)   | 376-06-7   | 0.00312 mg/kg            | # 49.2           | 59         | 129        |  |  |
| P231C: Perfluoro    | valkyl Sulfonamides (QCLot: 2524688)   |                                                |            |                          |                  |            |            |  |  |
| EB1921176-006       | HH SED02 190806                        | EP231X: Perfluorooctane sulfonamide (FOSA)     | 754-91-6   | 0.00125 mg/kg            | 65.6             | 52         | 132        |  |  |

Page : 10 of 11

Work Order : EB1921176-AJ Amendment 3
Client : AECOM Australia Pty Ltd

Project : 60609758



| Sub-Matrix: SOIL         |                                              |                                                                   |             | Ma            | atrix Spike (MS) Report |            |           |
|--------------------------|----------------------------------------------|-------------------------------------------------------------------|-------------|---------------|-------------------------|------------|-----------|
|                          |                                              |                                                                   |             | Spike         | SpikeRecovery(%)        | Recovery L | imits (%) |
| aboratory sample ID      | Client sample ID                             | Method: Compound                                                  | CAS Number  | Concentration | MS                      | Low        | High      |
| P231C: Perfluoro         | alkyl Sulfonamides (QCLot: 2524688) - contin | ued                                                               |             |               |                         |            |           |
| EB1921176-006            | HH_SED02_190806                              | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8  | 0.00312 mg/kg | # 49.2                  | 65         | 126       |
|                          |                                              | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2   | 0.00312 mg/kg | # 48.6                  | 64         | 126       |
|                          |                                              | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7  | 0.00312 mg/kg | # 33.0                  | 63         | 124       |
|                          |                                              | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2   | 0.00312 mg/kg | # 39.7                  | 58         | 125       |
|                          |                                              | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9   | 0.00125 mg/kg | 61.6                    | 61         | 130       |
|                          |                                              | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6   | 0.00125 mg/kg | # 51.2                  | 55         | 130       |
| P231D: (n:2 <u>) Flu</u> | orotelomer Sulfonic Acids (QCLot: 2524688)   |                                                                   |             |               |                         |            |           |
| B1921176-006             | HH_SED02_190806                              | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | 757124-72-4 | 0.00125 mg/kg | 63.2                    | 54         | 130       |
|                          |                                              | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                 | 27619-97-2  | 0.00125 mg/kg | # 57.6                  | 61         | 130       |
|                          |                                              | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                 | 39108-34-4  | 0.00125 mg/kg | 65.2                    | 62         | 130       |
|                          |                                              | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)               | 120226-60-0 | 0.00125 mg/kg | # 46.8                  | 60         | 130       |
| ub-Matrix: WATER         |                                              |                                                                   |             | Ma            | atrix Spike (MS) Report |            |           |
|                          |                                              |                                                                   |             | Spike         | SpikeRecovery(%)        | Recovery L | imits (%) |
| aboratory sample ID      | Client sample ID                             | Method: Compound                                                  | CAS Number  | Concentration | MS                      | Low        | High      |
| P231A: Perfluoro         | alkyl Sulfonic Acids (QCLot: 2524698)        |                                                                   |             |               |                         |            |           |
| EB1921176-002            | HH MW02 190806                               | EP231X-LL: Perfluorobutane sulfonic acid (PFBS)                   | 375-73-5    | 0.05 μg/L     | 114                     | 50         | 130       |
|                          |                                              | EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)                 | 2706-91-4   | 0.05 µg/L     | 108                     | 50         | 130       |
|                          |                                              | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)                  | 355-46-4    | 0.05 μg/L     | 82.4                    | 50         | 130       |
|                          |                                              | EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)                 | 375-92-8    | 0.05 μg/L     | 123                     | 50         | 130       |
|                          |                                              | EP231X-LL: Perfluorooctane sulfonic acid (PFOS)                   | 1763-23-1   | 0.05 µg/L     | # Not<br>Determined     | 50         | 130       |
|                          |                                              | EP231X-LL: Perfluorodecane sulfonic acid (PFDS)                   | 335-77-3    | 0.05 μg/L     | 107                     | 40         | 130       |
| P231B: Perfluoro         | palkyl Carboxylic Acids (QCLot: 2524698)     |                                                                   |             |               |                         |            |           |
| B1921176-002             | HH MW02 190806                               | EP231X-LL: Perfluorobutanoic acid (PFBA)                          | 375-22-4    | 0.25 μg/L     | 103                     | 50         | 130       |
|                          |                                              | EP231X-LL: Perfluoropentanoic acid (PFPeA)                        | 2706-90-3   | 0.05 μg/L     | 110                     | 50         | 130       |
|                          |                                              | EP231X-LL: Perfluorohexanoic acid (PFHxA)                         | 307-24-4    | 0.05 μg/L     | 107                     | 50         | 130       |
|                          |                                              | EP231X-LL: Perfluoroheptanoic acid (PFHpA)                        | 375-85-9    | 0.05 μg/L     | 108                     | 50         | 130       |
|                          |                                              | EP231X-LL: Perfluorooctanoic acid (PFOA)                          | 335-67-1    | 0.05 μg/L     | 106                     | 50         | 130       |
|                          |                                              | EP231X-LL: Perfluorononanoic acid (PFNA)                          | 375-95-1    | 0.05 μg/L     | 103                     | 50         | 130       |
|                          |                                              | EP231X-LL: Perfluorodecanoic acid (PFDA)                          | 335-76-2    | 0.05 μg/L     | 87.0                    | 50         | 130       |
|                          |                                              | EP231X-LL: Perfluoroundecanoic acid (PFUnDA)                      | 2058-94-8   | 0.05 μg/L     | 125                     | 40         | 130       |
|                          |                                              | EP231X-LL: Perfluorododecanoic acid (PFDoDA)                      | 307-55-1    | 0.05 μg/L     | 110                     | 40         | 130       |
|                          |                                              | Li 23 IX-LL. I Gilludi duduccanolic acid (i i DobiA)              |             |               |                         |            |           |

: 11 of 11 : EB1921176-AJ Amendment 3 Work Order : AECOM Australia Pty Ltd Client

Project : 60609758



| Sub-Matrix: WATER    |                                                      |                                                                      |             | M             | atrix Spike (MS) Report |            |           |
|----------------------|------------------------------------------------------|----------------------------------------------------------------------|-------------|---------------|-------------------------|------------|-----------|
|                      |                                                      |                                                                      |             | Spike         | SpikeRecovery(%)        | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                                     | Method: Compound                                                     | CAS Number  | Concentration | MS                      | Low        | High      |
| EP231B: Perfluoro    | palkyl Carboxylic Acids (QCLot: 2524698) - continued |                                                                      |             |               |                         |            |           |
| EB1921176-002        | HH_MW02_190806                                       | EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7    | 0.125 μg/L    | 106                     | 40         | 130       |
| EP231C: Perfluoro    | alkyl Sulfonamides (QCLot: 2524698)                  |                                                                      |             |               |                         |            |           |
| EB1921176-002        | HH_MW02_190806                                       | EP231X-LL: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6    | 0.05 μg/L     | 123                     | 40         | 130       |
|                      |                                                      | EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8  | 0.125 μg/L    | 129                     | 40         | 130       |
|                      |                                                      | EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2   | 0.125 μg/L    | 112                     | 40         | 130       |
|                      |                                                      | EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7  | 0.125 μg/L    | 96.1                    | 50         | 130       |
|                      |                                                      | EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2   | 0.125 μg/L    | 114                     | 40         | 130       |
|                      |                                                      | EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9   | 0.05 μg/L     | 112                     | 50         | 130       |
|                      |                                                      | EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6   | 0.05 μg/L     | 81.4                    | 40         | 130       |
| EP231D: (n:2) Fluc   | protelomer Sulfonic Acids (QCLot: 2524698)           |                                                                      |             |               |                         |            |           |
| EB1921176-002        | HH_MW02_190806                                       | EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | 757124-72-4 | 0.05 μg/L     | 117                     | 50         | 130       |
|                      |                                                      | EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                 | 27619-97-2  | 0.05 μg/L     | 116                     | 50         | 130       |
|                      |                                                      | EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                 | 39108-34-4  | 0.05 μg/L     | 119                     | 50         | 130       |
|                      |                                                      | EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)               | 120226-60-0 | 0.05 μg/L     | 114                     | 50         | 130       |



## QA/QC Compliance Assessment to assist with Quality Review

**Work Order** : **EB1921176** Page : 1 of 13

Amendment : 3

Client : AECOM Australia Pty Ltd Laboratory : Environmental Division Brisbane

 Contact
 : MR JAMES PEACHEY
 Telephone
 : +61 7 3552 8616

 Project
 : 60609758
 Date Samples Received
 : 13-Aug-2019

 Site
 : QFES Home Hill
 Issue Date
 : 04-Sep-2019

Sampler : NK No. of samples received : 39
Order number : 60609758 2.0 No. of samples analysed : 39

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

### **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- Duplicate outliers exist please see following pages for full details.
- Laboratory Control outliers exist please see following pages for full details.
- Matrix Spike outliers exist please see following pages for full details.
- Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

#### **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

#### **Outliers: Frequency of Quality Control Samples**

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 13

Work Order : EB1921176 Amendment 3
Client : AECOM Australia Pty Ltd

Project : 60609758

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

| Compound Group Name                      | Laboratory Sample ID | Client Sample ID | Analyte                                                   | CAS Number | Data   | Limits   | Comment                                         |
|------------------------------------------|----------------------|------------------|-----------------------------------------------------------|------------|--------|----------|-------------------------------------------------|
| iplicate (DUP) RPDs                      |                      |                  |                                                           |            |        |          |                                                 |
| EP231A: Perfluoroalkyl Sulfonic Acids    |                      |                  | Perfluorooctane sulfonic acid (PFOS)                      | 1763-23-1  | 54.0 % | 0% - 50% | RPD exceeds LOR based limits                    |
| aboratory Control Spike (LCS) Recoveries |                      |                  |                                                           |            |        |          |                                                 |
| EP231B: Perfluoroalkyl Carboxylic Acids  | QC-2524688-002       |                  | Perfluorobutanoic acid (PFBA)                             | 375-22-4   | 37.5 % | 52-128%  | Recovery less than lower control limit          |
| EP231C: Perfluoroalkyl Sulfonamides      | QC-2524688-002       |                  | N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8 | 54.5 % | 65-126%  | Recovery less than lower control limit          |
| EP231C: Perfluoroalkyl Sulfonamides      | QC-2524688-002       |                  | N-Ethyl perfluorooctane<br>sulfonamide<br>(EtFOSA)        | 4151-50-2  | 45.4 % | 64-126%  | Recovery less than lower control limit          |
| EP231C: Perfluoroalkyl Sulfonamides      | QC-2524688-002       |                  | N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7 | 35.2 % | 63-124%  | Recovery less than lower control limit          |
| EP231C: Perfluoroalkyl Sulfonamides      | QC-2524688-002       |                  | N-Ethyl perfluorooctane<br>sulfonamidoethanol<br>(EtFOSE) | 1691-99-2  | 48.1 % | 58-125%  | Recovery less than lower control limit          |
| atrix Spike (MS) Recoveries              |                      |                  |                                                           |            |        |          |                                                 |
| EP231A: Perfluoroalkyl Sulfonic Acids    | EB1921176006         | HH_SED02_190806  | Perfluorooctane sulfonic acid (PFOS)                      | 1763-23-1  | 37.3 % | 55-127%  | Recovery less than lower data quality objective |
| EP231B: Perfluoroalkyl Carboxylic Acids  | EB1921176006         | HH_SED02_190806  | Perfluorobutanoic acid (PFBA)                             | 375-22-4   | 26.1 % | 52-128%  | Recovery less than lower data quality objective |
| EP231B: Perfluoroalkyl Carboxylic Acids  | EB1921176006         | HH_SED02_190806  | Perfluorononanoic acid<br>(PFNA)                          | 375-95-1   | 62.2 % | 63-130%  | Recovery less than lower data quality objective |
| EP231B: Perfluoroalkyl Carboxylic Acids  | EB1921176006         | HH_SED02_190806  | Perfluorodecanoic acid (PFDA)                             | 335-76-2   | 37.0 % | 55-130%  | Recovery less than lower data quality objective |
| EP231B: Perfluoroalkyl Carboxylic Acids  | EB1921176006         | HH_SED02_190806  | Perfluoroundecanoic acid (PFUnDA)                         | 2058-94-8  | 51.8 % | 62-130%  | Recovery less than lower data quality objective |
| EP231B: Perfluoroalkyl Carboxylic Acids  | EB1921176006         | HH_SED02_190806  | Perfluorododecanoic acid (PFDoDA)                         | 307-55-1   | 51.3 % | 53-134%  | Recovery less than lower data quality objective |
| EP231B: Perfluoroalkyl Carboxylic Acids  | EB1921176006         | HH_SED02_190806  | Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8 | 41.6 % | 49-129%  | Recovery less than lower data quality objective |
| EP231B: Perfluoroalkyl Carboxylic Acids  | EB1921176006         | HH_SED02_190806  | Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7   | 49.2 % | 59-129%  | Recovery less than lower data quality objective |
| EP231C: Perfluoroalkyl Sulfonamides      | EB1921176006         | HH_SED02_190806  | N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8 | 49.2 % | 65-126%  | Recovery less than lower data quality objective |



Page : 3 of 13

Work Order : EB1921176 Amendment 3
Client : AECOM Australia Pty Ltd

Project : 60609758

Matrix: SOIL



| Compound Group Name                        | Laboratory Sample ID | Client Sample ID | Analyte                                                        | CAS Number  | Data   | Limits  | Comment                                         |
|--------------------------------------------|----------------------|------------------|----------------------------------------------------------------|-------------|--------|---------|-------------------------------------------------|
| Matrix Spike (MS) Recoveries - Continued   |                      |                  |                                                                |             |        |         |                                                 |
| EP231C: Perfluoroalkyl Sulfonamides        | EB1921176006         | HH_SED02_190806  | N-Ethyl perfluorooctane<br>sulfonamide<br>(EtFOSA)             | 4151-50-2   | 48.6 % | 64-126% | Recovery less than lower data quality objective |
| EP231C: Perfluoroalkyl Sulfonamides        | EB1921176006         | HH_SED02_190806  | N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)           | 24448-09-7  | 33.0 % | 63-124% | Recovery less than lower data quality objective |
| EP231C: Perfluoroalkyl Sulfonamides        | EB1921176006         | HH_SED02_190806  | N-Ethyl perfluorooctane<br>sulfonamidoethanol<br>(EtFOSE)      | 1691-99-2   | 39.7 % | 58-125% | Recovery less than lower data quality objective |
| EP231C: Perfluoroalkyl Sulfonamides        | EB1921176006         | HH_SED02_190806  | N-Ethyl perfluorooctane<br>sulfonamidoacetic<br>acid (EtFOSAA) | 2991-50-6   | 51.2 % | 55-130% | Recovery less than lower data quality objective |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids | EB1921176006         | HH_SED02_190806  | 6:2 Fluorotelomer<br>sulfonic acid (6:2<br>FTS)                | 27619-97-2  | 57.6 % | 61-130% | Recovery less than lower data quality objective |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids | EB1921176006         | HH_SED02_190806  | 10:2 Fluorotelomer<br>sulfonic acid (10:2<br>FTS)              | 120226-60-0 | 46.8 % | 60-130% | Recovery less than lower data quality objective |

Matrix: WATER

| Compound Group Name                        | Laboratory Sample ID | Client Sample ID | Analyte                 | CAS Number        | Data       | Limits   | Comment                               |
|--------------------------------------------|----------------------|------------------|-------------------------|-------------------|------------|----------|---------------------------------------|
| Duplicate (DUP) RPDs                       |                      |                  |                         |                   |            |          |                                       |
| EP231A: Perfluoroalkyl Sulfonic Acids      |                      |                  | Perfluorooctane         | 1763-23-1         | 23.9 %     | 0% - 20% | RPD exceeds LOR based limits          |
|                                            |                      |                  | sulfonic acid (PFOS)    |                   |            |          |                                       |
| EP231P: PFAS Sums                          |                      |                  | Sum of PFAS             |                   | 21.2 %     | 0% - 20% | RPD exceeds LOR based limits          |
| EP231P: PFAS Sums                          |                      | :                | Sum of PFHxS and PFOS   | 355-46-4/1763-23- | 22.5 %     | 0% - 20% | RPD exceeds LOR based limits          |
|                                            |                      |                  |                         | 1                 |            |          |                                       |
| EP231P: PFAS Sums                          |                      |                  | Sum of PFAS (WA DER     |                   | 21.4 %     | 0% - 20% | RPD exceeds LOR based limits          |
|                                            |                      |                  | List)                   |                   |            |          |                                       |
| Matrix Spike (MS) Recoveries               |                      |                  |                         |                   |            |          |                                       |
| EP231A: Perfluoroalkyl Sulfonic Acids      | EB1921176002         | HH_MW02_190806   | Perfluorooctane         | 1763-23-1         | Not        |          | MS recovery not determined,           |
|                                            |                      |                  | sulfonic acid (PFOS)    |                   | Determined |          | background level greater than or      |
|                                            |                      |                  |                         |                   |            |          | equal to 4x spike level.              |
| EP231B: Perfluoroalkyl Carboxylic Acids    | EB1921138003         | Anonymous        | Perfluoroundecanoic     | 2058-94-8         | 156 %      | 40-130%  | Recovery greater than upper data      |
|                                            |                      |                  | acid (PFUnDA)           |                   |            |          | quality objective                     |
| EP231C: Perfluoroalkyl Sulfonamides        | EB1921138003         | Anonymous        | N-Ethyl perfluorooctane | 2991-50-6         | 35.2 %     | 40-130%  | Recovery less than lower data quality |
|                                            |                      |                  | sulfonamidoacetic       |                   |            |          | objective                             |
|                                            |                      |                  | acid (EtFOSAA)          |                   |            |          |                                       |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids | EB1921138003         | Anonymous        | 6:2 Fluorotelomer       | 27619-97-2        | 135 %      | 50-130%  | Recovery greater than upper data      |
|                                            |                      |                  | sulfonic acid (6:2      |                   |            |          | quality objective                     |
|                                            |                      |                  | FTS)                    |                   |            |          |                                       |

Page : 4 of 13

Work Order : EB1921176 Amendment 3
Client : AECOM Australia Pty Ltd

Project : 60609758

#### Matrix: WATER

| Compound Group Name                        | Laboratory Sample ID | Client Sample ID | Analyte             | CAS Number  | Data  | Limits  | Comment                          |
|--------------------------------------------|----------------------|------------------|---------------------|-------------|-------|---------|----------------------------------|
| Matrix Spike (MS) Recoveries - Continued   |                      |                  |                     |             |       |         |                                  |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids | EB1921138003         | Anonymous        | 10:2 Fluorotelomer  | 120226-60-0 | 136 % | 50-130% | Recovery greater than upper data |
|                                            |                      |                  | sulfonic acid (10:2 |             |       |         | quality objective                |
|                                            |                      |                  | FTS)                |             |       |         |                                  |

#### Regular Sample Surrogates

Sub-Matrix: SOIL

| Sub-Iviatrix. SOIL     |                      |                  |           |            |        |          |                                       |
|------------------------|----------------------|------------------|-----------|------------|--------|----------|---------------------------------------|
| Compound Group Name    | Laboratory Sample ID | Client Sample ID | Analyte   | CAS Number | Data   | Limits   | Comment                               |
| Samples Submitted      |                      |                  |           |            |        |          |                                       |
| EP231S: PFAS Surrogate | EB1921176-008        | HH_QC107_190806  | 13C4-PFOS |            | 67.5 % | 70-130 % | Recovery less than lower data quality |
|                        |                      |                  |           |            |        |          | objective                             |
| EP231S: PFAS Surrogate |                      |                  | 13C4-PFOS |            | 69.5 % | 70-130 % | Recovery less than lower data quality |
|                        |                      |                  |           |            |        |          | objective                             |
| EP231S: PFAS Surrogate |                      |                  | 13C4-PFOS |            | 21.5 % | 70-130 % | Recovery less than lower data quality |
|                        |                      |                  |           |            |        |          | objective                             |
| EP231S: PFAS Surrogate |                      |                  | 13C4-PFOS |            | 12.5 % | 70-130 % | Recovery less than lower data quality |
|                        |                      |                  |           |            |        |          | objective                             |
| EP231S: PFAS Surrogate |                      |                  | 13C4-PFOS |            | 30.5 % | 70-130 % | Recovery less than lower data quality |
|                        |                      |                  |           |            |        |          | objective                             |
| EP231S: PFAS Surrogate |                      |                  | 13C4-PFOS |            | 40.5 % | 70-130 % | Recovery less than lower data quality |
|                        |                      |                  |           |            |        |          | objective                             |
| EP231S: PFAS Surrogate |                      | T.               | 13C8-PFOA |            | 21.5 % | 70-130 % | Recovery less than lower data quality |
|                        |                      |                  |           |            |        |          | objective                             |
| EP231S: PFAS Surrogate |                      |                  | 13C8-PFOA |            | 14.0 % | 70-130 % | Recovery less than lower data quality |
|                        |                      |                  |           |            |        |          | objective                             |
| EP231S: PFAS Surrogate |                      | 1                | 13C8-PFOA |            | 35.5 % | 70-130 % | Recovery less than lower data quality |
|                        |                      |                  |           |            |        |          | objective                             |
| EP231S: PFAS Surrogate |                      | 1                | 13C8-PFOA |            | 49.0 % | 70-130 % | Recovery less than lower data quality |
|                        |                      |                  |           |            |        |          | objective                             |

#### Sub-Matrix: WATER

| Compound Group Name    | Laboratory Sample ID | Client Sample ID | Analyte   | CAS Number | Data   | Limits   | Comment                               |
|------------------------|----------------------|------------------|-----------|------------|--------|----------|---------------------------------------|
| Samples Submitted      |                      |                  |           |            |        |          |                                       |
| EP231S: PFAS Surrogate |                      |                  | 13C4-PFOS |            | 35.9 % | 70-130 % | Recovery less than lower data quality |
|                        |                      |                  |           |            |        |          | objective                             |
| EP231S: PFAS Surrogate |                      |                  | 13C8-PFOA |            | 45.5 % | 70-130 % | Recovery less than lower data quality |
|                        |                      |                  |           |            |        |          | objective                             |

Page : 5 of 13

Work Order : EB1921176 Amendment 3 Client : AECOM Australia Pty Ltd

Project • 60609758



### **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation: **x** = Holding time breach; ✓ = Within holding time.

| viatrix. SOIL                          |                  |             |                |                        | Lvaluatioi | i. × = Holding time | breach, V - With | ii noluling tili |
|----------------------------------------|------------------|-------------|----------------|------------------------|------------|---------------------|------------------|------------------|
| Method                                 |                  | Sample Date | Ex             | traction / Preparation |            |                     | Analysis         |                  |
| Container / Client Sample ID(s)        |                  |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis | Evaluation       |
| EA055: Moisture Content (Dried @ 105-1 | 10°C)            |             |                |                        |            |                     |                  |                  |
| HDPE Soil Jar (EA055)                  |                  |             |                |                        |            |                     |                  |                  |
| HH_SED01_190806,                       | HH_SED02_190806, | 06-Aug-2019 |                |                        |            | 15-Aug-2019         | 20-Aug-2019      | ✓                |
| HH_QC107_190806,                       |                  |             |                |                        |            |                     |                  |                  |
| 6                                      |                  |             |                |                        |            |                     |                  |                  |
| HDPE Soil Jar (EA055)                  |                  |             |                |                        |            |                     |                  |                  |
|                                        |                  | 08-Aug-2019 |                |                        |            | 15-Aug-2019         | 22-Aug-2019      | ✓                |
|                                        |                  |             |                |                        |            |                     |                  |                  |
| EP231A: Perfluoroalkyl Sulfonic Acids  |                  |             |                |                        |            |                     |                  |                  |
| HDPE Soil Jar (EP231X)                 |                  |             |                |                        |            |                     |                  |                  |
| HH_SED01_190806,                       | HH_SED02_190806, | 06-Aug-2019 | 15-Aug-2019    | 02-Feb-2020            | ✓          | 19-Aug-2019         | 24-Sep-2019      | ✓                |
| HH_QC107_190806,                       |                  |             |                |                        |            |                     |                  |                  |
|                                        |                  |             |                |                        |            |                     |                  |                  |
| HDPE Soil Jar (EP231X)                 |                  |             |                |                        |            |                     |                  |                  |
|                                        |                  | 08-Aug-2019 | 15-Aug-2019    | 04-Feb-2020            | ✓          | 19-Aug-2019         | 24-Sep-2019      | ✓                |
|                                        |                  |             |                |                        |            |                     |                  |                  |
| EP231B: Perfluoroalkyl Carboxylic Acid | s                |             |                |                        | Į.         |                     |                  | <u> </u>         |
| HDPE Soil Jar (EP231X)                 |                  |             |                |                        | _          |                     |                  |                  |
| HH_SED01_190806,                       | HH_SED02_190806, | 06-Aug-2019 | 15-Aug-2019    | 02-Feb-2020            | ✓          | 19-Aug-2019         | 24-Sep-2019      | ✓                |
| HH_QC107_190806,                       |                  |             |                |                        |            |                     |                  |                  |
|                                        |                  |             |                |                        |            |                     |                  |                  |
| HDPE Soil Jar (EP231X)                 |                  |             |                |                        |            |                     |                  |                  |
|                                        |                  | 08-Aug-2019 | 15-Aug-2019    | 04-Feb-2020            | ✓          | 19-Aug-2019         | 24-Sep-2019      | ✓                |
|                                        |                  |             |                |                        |            |                     |                  |                  |
|                                        |                  |             |                |                        |            |                     |                  |                  |

Page : 6 of 13

Work Order : EB1921176 Amendment 3
Client : AECOM Australia Pty Ltd

Project : 60609758



| Matrix: SOIL                                                   |                  |             |                |                        | Evaluation | n: 🗴 = Holding time | breach ; ✓ = Withi | n holding time |
|----------------------------------------------------------------|------------------|-------------|----------------|------------------------|------------|---------------------|--------------------|----------------|
| Method                                                         |                  | Sample Date | E              | traction / Preparation |            |                     | Analysis           |                |
| Container / Client Sample ID(s)                                |                  |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation     |
| EP231C: Perfluoroalkyl Sulfonamides                            |                  |             |                |                        |            |                     |                    |                |
| HDPE Soil Jar (EP231X)<br>HH_SED01_190806,<br>HH_QC107_190806, | HH_SED02_190806, | 06-Aug-2019 | 15-Aug-2019    | 02-Feb-2020            | ✓          | 19-Aug-2019         | 24-Sep-2019        | ✓              |
| HDPE Soil Jar (EP231X)                                         |                  | 08-Aug-2019 | 15-Aug-2019    | 04-Feb-2020            | ✓          | 19-Aug-2019         | 24-Sep-2019        | ✓              |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids                     |                  |             |                |                        |            |                     |                    |                |
| HDPE Soil Jar (EP231X)<br>HH_SED01_190806,<br>HH_QC107_190806, | HH_SED02_190806, | 06-Aug-2019 | 15-Aug-2019    | 02-Feb-2020            | 1          | 19-Aug-2019         | 24-Sep-2019        | ✓              |
| HDPE Soil Jar (EP231X)                                         |                  | 08-Aug-2019 | 15-Aug-2019    | 04-Feb-2020            | ✓          | 19-Aug-2019         | 24-Sep-2019        | ✓              |
| EP231P: PFAS Sums                                              |                  |             |                |                        |            |                     |                    |                |
| HDPE Soil Jar (EP231X)<br>HH_SED01_190806,<br>HH_QC107_190806, | HH_SED02_190806, | 06-Aug-2019 | 15-Aug-2019    | 02-Feb-2020            | ✓          | 19-Aug-2019         | 24-Sep-2019        | ✓              |
| HDPE Soil Jar (EP231X)                                         |                  | 08-Aug-2019 | 15-Aug-2019    | 04-Feb-2020            | ✓          | 19-Aug-2019         | 24-Sep-2019        | ✓              |
| Matrix: WATER                                                  |                  |             | <u> </u>       |                        | Evaluation | n: × = Holding time | breach ; ✓ = Withi | n holding time |
| Method                                                         |                  | Sample Date | E              | traction / Preparation |            |                     | Analysis           |                |
| Container / Client Sample ID(s)                                |                  |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation     |

: 7 of 13 : EB1921176 Amendment 3 Work Order : AECOM Australia Pty Ltd Client

Project 60609758



| Matrix: WATER                                                               |                                                        |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time |
|-----------------------------------------------------------------------------|--------------------------------------------------------|-------------|----------------|------------------------|------------|--------------------|--------------------|----------------|
| Method                                                                      |                                                        | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                |
| Container / Client Sample ID(s)                                             |                                                        |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EP231A: Perfluoroalkyl Sulfonic Acids                                       |                                                        |             |                |                        |            |                    |                    |                |
| HDPE (no PTFE) (EP231X-LL) HH_MW01_190806, HH_MW03_190806, HH_QC106_190806, | HH_MW02_190806,<br>HH_MW04_190806,<br>HH_QC303_190806, | 06-Aug-2019 | 15-Aug-2019    | 02-Feb-2020            | 1          | 15-Aug-2019        | 02-Feb-2020        | ✓              |
| HDPE (no PTFE) (EP231X-ST)                                                  |                                                        | 06-Aug-2019 | 19-Aug-2019    | 02-Feb-2020            | <b>√</b>   | 19-Aug-2019        | 02-Feb-2020        | <b>√</b>       |
| HDPE (no PTFE) (EP231X-ST)                                                  |                                                        | 06-Aug-2019 | 27-Aug-2019    | 02-Feb-2020            | 1          | 27-Aug-2019        | 02-Feb-2020        | <b>V</b>       |
| HDPE (no PTFE) (EP231X-LL)                                                  |                                                        | 07-Aug-2019 | 15-Aug-2019    | 03-Feb-2020            | <u>√</u>   | 15-Aug-2019        | 03-Feb-2020        | <b>√</b>       |
| HDPE (no PTFE) (EP231X-LL)                                                  |                                                        | 07-Aug-2019 | 16-Aug-2019    | 03-Feb-2020            | ✓          | 16-Aug-2019        | 03-Feb-2020        | ✓              |
| HDPE (no PTFE) (EP231X-LL)                                                  |                                                        | 08-Aug-2019 | 02-Sep-2019    | 04-Feb-2020            | <b>√</b>   | 02-Sep-2019        | 04-Feb-2020        | <b>√</b>       |
| HDPE (no PTFE) (EP231X-LL)                                                  |                                                        | 08-Aug-2019 | 15-Aug-2019    | 04-Feb-2020            | ✓          | 15-Aug-2019        | 04-Feb-2020        | ✓              |
|                                                                             |                                                        |             |                |                        |            |                    |                    |                |

Page : 8 of 13

Work Order : EB1921176 Amendment 3
Client : AECOM Australia Pty Ltd

Project : 60609758



| Matrix: WATER                                                               |                                                        |             |                |                        | Evaluation | n: × = Holding time | breach ; ✓ = Withi | n holding time |
|-----------------------------------------------------------------------------|--------------------------------------------------------|-------------|----------------|------------------------|------------|---------------------|--------------------|----------------|
| Method                                                                      |                                                        | Sample Date | Ex             | traction / Preparation |            |                     | Analysis           |                |
| Container / Client Sample ID(s)                                             |                                                        |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation     |
| EP231B: Perfluoroalkyl Carboxylic Acids                                     |                                                        |             |                |                        |            |                     |                    |                |
| HDPE (no PTFE) (EP231X-LL) HH_MW01_190806, HH_MW03_190806, HH_QC106_190806, | HH_MW02_190806,<br>HH_MW04_190806,<br>HH_QC303_190806, | 06-Aug-2019 | 15-Aug-2019    | 02-Feb-2020            | ✓          | 15-Aug-2019         | 02-Feb-2020        | ✓              |
| HDPE (no PTFE) (EP231X-ST)                                                  |                                                        | 06-Aug-2019 | 19-Aug-2019    | 02-Feb-2020            | <b>√</b>   | 19-Aug-2019         | 02-Feb-2020        | <b>√</b>       |
| HDPE (no PTFE) (EP231X-ST)                                                  |                                                        | 06-Aug-2019 | 27-Aug-2019    | 02-Feb-2020            | <b>√</b>   | 27-Aug-2019         | 02-Feb-2020        | <b>√</b>       |
| HDPE (no PTFE) (EP231X-LL)                                                  |                                                        | 07-Aug-2019 | 15-Aug-2019    | 03-Feb-2020            | 1          | 15-Aug-2019         | 03-Feb-2020        | <b>√</b>       |
| HDPE (no PTFE) (EP231X-LL)                                                  |                                                        | 07-Aug-2019 | 16-Aug-2019    | 03-Feb-2020            | 1          | 16-Aug-2019         | 03-Feb-2020        | ✓              |
| HDPE (no PTFE) (EP231X-LL)                                                  |                                                        | 08-Aug-2019 | 02-Sep-2019    | 04-Feb-2020            | ✓          | 02-Sep-2019         | 04-Feb-2020        | <b>√</b>       |
| HDPE (no PTFE) (EP231X-LL)                                                  |                                                        | 08-Aug-2019 | 15-Aug-2019    | 04-Feb-2020            | 1          | 15-Aug-2019         | 04-Feb-2020        | ✓              |
|                                                                             |                                                        |             |                |                        |            |                     |                    |                |

Page : 9 of 13

Work Order : EB1921176 Amendment 3
Client : AECOM Australia Pty Ltd

Project : 60609758



| Evaluatio            |                | n: × = Holding time | e breach ; ✓ = Withi | in holding tim |
|----------------------|----------------|---------------------|----------------------|----------------|
| eparation            | Extra          |                     | Analysis             |                |
| xtraction Evaluation | Date extracted | Date analysed       | Due for analysis     | Evaluation     |
|                      |                |                     |                      |                |
| -2020                | 15-Aug-2019    | 15-Aug-2019         | 02-Feb-2020          | <b>✓</b>       |
| -2020                | 19-Aug-2019    | 19-Aug-2019         | 02-Feb-2020          | <b>✓</b>       |
| -2020                | 27-Aug-2019    | 27-Aug-2019         | 02-Feb-2020          | 1              |
| -2020                | 15-Aug-2019    | 15-Aug-2019         | 03-Feb-2020          | 1              |
| -2020                | 16-Aug-2019    | 16-Aug-2019         | 03-Feb-2020          | <b>✓</b>       |
| -2020                | 02-Sep-2019    | 02-Sep-2019         | 04-Feb-2020          | <b>√</b>       |
| -2020                | 15-Aug-2019    | 15-Aug-2019         | 04-Feb-2020          | <b>√</b>       |
|                      |                |                     |                      |                |

: 10 of 13 : EB1921176 Amendment 3 Work Order : AECOM Australia Pty Ltd Client

Project 60609758



|             |                                                                         |                                                                                                                                                      | Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                    | n: × = Holding time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | breach ; ✓ = Withi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in holding tim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Date | E)                                                                      | traction / Preparation                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | Date extracted                                                          | Due for extraction                                                                                                                                   | Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                    | Date analysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Due for analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |                                                                         |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 06-Aug-2019 | 15-Aug-2019                                                             | 02-Feb-2020                                                                                                                                          | ✓                                                                                                                                                                                                                                                                                                                                                                                                                             | 15-Aug-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 02-Feb-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>✓</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-Aug-2019 | 19-Aug-2019                                                             | 02-Feb-2020                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                               | 19-Aug-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 02-Feb-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-Aug-2019 | 27-Aug-2019                                                             | 02-Feb-2020                                                                                                                                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                      | 27-Aug-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 02-Feb-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07-Aug-2019 | 15-Aug-2019                                                             | 03-Feb-2020                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                             | 15-Aug-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 03-Feb-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07-Aug-2019 | 16-Aug-2019                                                             | 03-Feb-2020                                                                                                                                          | ✓                                                                                                                                                                                                                                                                                                                                                                                                                             | 16-Aug-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 03-Feb-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>✓</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 08-Aug-2019 | 02-Sep-2019                                                             | 04-Feb-2020                                                                                                                                          | <b>√</b>                                                                                                                                                                                                                                                                                                                                                                                                                      | 02-Sep-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 04-Feb-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>✓</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 08-Aug-2019 | 15-Aug-2019                                                             | 04-Feb-2020                                                                                                                                          | ✓                                                                                                                                                                                                                                                                                                                                                                                                                             | 15-Aug-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 04-Feb-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>✓</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | 06-Aug-2019<br>06-Aug-2019<br>06-Aug-2019<br>07-Aug-2019<br>08-Aug-2019 | 06-Aug-2019 15-Aug-2019  06-Aug-2019 19-Aug-2019  06-Aug-2019 27-Aug-2019  07-Aug-2019 15-Aug-2019  07-Aug-2019 16-Aug-2019  08-Aug-2019 02-Sep-2019 | Date extracted         Due for extraction           06-Aug-2019         15-Aug-2019         02-Feb-2020           06-Aug-2019         19-Aug-2019         02-Feb-2020           06-Aug-2019         27-Aug-2019         02-Feb-2020           07-Aug-2019         15-Aug-2019         03-Feb-2020           07-Aug-2019         16-Aug-2019         03-Feb-2020           08-Aug-2019         02-Sep-2019         04-Feb-2020 | Sample Date         Extraction / Preparation           Date extracted         Due for extraction         Evaluation           06-Aug-2019         15-Aug-2019         02-Feb-2020         ✓           06-Aug-2019         19-Aug-2019         02-Feb-2020         ✓           06-Aug-2019         27-Aug-2019         02-Feb-2020         ✓           07-Aug-2019         15-Aug-2019         03-Feb-2020         ✓           07-Aug-2019         16-Aug-2019         03-Feb-2020         ✓           08-Aug-2019         02-Sep-2019         04-Feb-2020         ✓ | Sample Date         Extraction / Preparation           Date extracted         Due for extraction         Evaluation         Date analysed           06-Aug-2019         15-Aug-2019         02-Feb-2020         ✓         15-Aug-2019           06-Aug-2019         19-Aug-2019         02-Feb-2020         ✓         19-Aug-2019           06-Aug-2019         27-Aug-2019         02-Feb-2020         ✓         27-Aug-2019           07-Aug-2019         15-Aug-2019         03-Feb-2020         ✓         15-Aug-2019           07-Aug-2019         16-Aug-2019         03-Feb-2020         ✓         16-Aug-2019           08-Aug-2019         02-Sep-2019         04-Feb-2020         ✓         02-Sep-2019 | Date extracted         Due for extraction         Evaluation         Date analysed         Due for analysis           06-Aug-2019         15-Aug-2019         02-Feb-2020         ✓         15-Aug-2019         02-Feb-2020           06-Aug-2019         19-Aug-2019         02-Feb-2020         ✓         19-Aug-2019         02-Feb-2020           06-Aug-2019         27-Aug-2019         02-Feb-2020         ✓         27-Aug-2019         02-Feb-2020           07-Aug-2019         15-Aug-2019         03-Feb-2020         ✓         15-Aug-2019         03-Feb-2020           07-Aug-2019         16-Aug-2019         03-Feb-2020         ✓         16-Aug-2019         03-Feb-2020           08-Aug-2019         02-Sep-2019         04-Feb-2020         ✓         02-Sep-2019         04-Feb-2020 |

: 11 of 13 : EB1921176 Amendment 3 Work Order : AECOM Australia Pty Ltd Client

Project 60609758



| Matrix: WATER                                                               |                                                        |             |                |                        | Evaluation | n: × = Holding time | breach ; ✓ = Withi | n holding time |
|-----------------------------------------------------------------------------|--------------------------------------------------------|-------------|----------------|------------------------|------------|---------------------|--------------------|----------------|
| Method                                                                      |                                                        | Sample Date | Ex             | traction / Preparation |            |                     | Analysis           |                |
| Container / Client Sample ID(s)                                             |                                                        |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation     |
| EP231P: PFAS Sums                                                           |                                                        |             |                |                        |            |                     |                    |                |
| HDPE (no PTFE) (EP231X-LL) HH_MW01_190806, HH_MW03_190806, HH_QC106_190806, | HH_MW02_190806,<br>HH_MW04_190806,<br>HH_QC303_190806, | 06-Aug-2019 | 15-Aug-2019    | 02-Feb-2020            | ✓          | 15-Aug-2019         | 02-Feb-2020        | ✓              |
| HDPE (no PTFE) (EP231X-ST)                                                  |                                                        | 06-Aug-2019 | 19-Aug-2019    | 02-Feb-2020            | <b>√</b>   | 19-Aug-2019         | 02-Feb-2020        | <b>√</b>       |
| HDPE (no PTFE) (EP231X-ST)                                                  |                                                        | 06-Aug-2019 | 27-Aug-2019    | 02-Feb-2020            | <b>√</b>   | 27-Aug-2019         | 02-Feb-2020        | <b>√</b>       |
| HDPE (no PTFE) (EP231X-LL)                                                  |                                                        | 07-Aug-2019 | 15-Aug-2019    | 03-Feb-2020            | <b>√</b>   | 15-Aug-2019         | 03-Feb-2020        | ·              |
| HDPE (no PTFE) (EP231X-LL)                                                  |                                                        | 07-Aug-2019 | 16-Aug-2019    | 03-Feb-2020            | ✓          | 16-Aug-2019         | 03-Feb-2020        | <b>✓</b>       |
| HDPE (no PTFE) (EP231X-LL)                                                  |                                                        | 08-Aug-2019 | 02-Sep-2019    | 04-Feb-2020            | <b>√</b>   | 02-Sep-2019         | 04-Feb-2020        | 1              |
| HDPE (no PTFE) (EP231X-LL)                                                  |                                                        | 08-Aug-2019 | 15-Aug-2019    | 04-Feb-2020            | ✓          | 15-Aug-2019         | 04-Feb-2020        | <b>√</b>       |
|                                                                             |                                                        |             |                |                        |            |                     |                    |                |

Page : 12 of 13

Work Order : EB1921176 Amendment 3 Client : AECOM Australia Pty Ltd

Project : 60609758



## **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: SOIL                                         |           |                |         | Evaluation                    | n: × = Quality Co | ntrol frequency r  | not within specification; ✓ = Quality Control frequency within specification. |  |
|------------------------------------------------------|-----------|----------------|---------|-------------------------------|-------------------|--------------------|-------------------------------------------------------------------------------|--|
| Quality Control Sample Type                          |           | Co             | ount    |                               | Rate (%)          |                    | Quality Control Specification                                                 |  |
| Analytical Methods                                   | Method    | QC             | Regular | Actual                        | Expected          | Evaluation         |                                                                               |  |
| Laboratory Duplicates (DUP)                          |           |                |         |                               |                   |                    |                                                                               |  |
| Moisture Content                                     | EA055     | 2              | 12      | 16.67                         | 10.00             | ✓                  | NEPM 2013 B3 & ALS QC Standard                                                |  |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 2              | 12      | 16.67                         | 10.00             | ✓                  | NEPM 2013 B3 & ALS QC Standard                                                |  |
| Laboratory Control Samples (LCS)                     |           |                |         |                               |                   |                    |                                                                               |  |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 1              | 12      | 8.33                          | 5.00              | ✓                  | NEPM 2013 B3 & ALS QC Standard                                                |  |
| Method Blanks (MB)                                   |           |                |         |                               |                   |                    |                                                                               |  |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 1              | 12      | 8.33                          | 5.00              | ✓                  | NEPM 2013 B3 & ALS QC Standard                                                |  |
| Matrix Spikes (MS)                                   |           |                |         |                               |                   |                    |                                                                               |  |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 1              | 12      | 8.33                          | 5.00              | ✓                  | NEPM 2013 B3 & ALS QC Standard                                                |  |
| Matrix: WATER                                        | '         |                |         | Evaluation                    | n: × = Quality Co | introl frequency r | not within specification; ✓ = Quality Control frequency within specification. |  |
| Quality Control Sample Type                          |           | Count Rate (%) |         | Quality Control Specification |                   |                    |                                                                               |  |
| Analytical Methods                                   | Method    | QC             | Regular | Actual                        | Expected          | Evaluation         |                                                                               |  |
| Laboratory Duplicates (DUP)                          |           |                |         |                               |                   |                    |                                                                               |  |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 4              | 26      | 15.38                         | 10.00             | ✓                  | NEPM 2013 B3 & ALS QC Standard                                                |  |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X-ST | 2              | 5       | 40.00                         | 10.00             | ✓                  | NEPM 2013 B3 & ALS QC Standard                                                |  |
| Laboratory Control Samples (LCS)                     |           |                |         |                               |                   |                    |                                                                               |  |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 3              | 26      | 11.54                         | 5.00              | ✓                  | NEPM 2013 B3 & ALS QC Standard                                                |  |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X-ST | 2              | 5       | 40.00                         | 5.00              | ✓                  | NEPM 2013 B3 & ALS QC Standard                                                |  |
| Method Blanks (MB)                                   |           |                |         |                               |                   |                    |                                                                               |  |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 3              | 26      | 11.54                         | 5.00              | ✓                  | NEPM 2013 B3 & ALS QC Standard                                                |  |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X-ST | 2              | 5       | 40.00                         | 5.00              | <b>√</b>           | NEPM 2013 B3 & ALS QC Standard                                                |  |
| Matrix Spikes (MS)                                   |           |                |         |                               |                   |                    |                                                                               |  |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 2              | 26      | 7.69                          | 5.00              | ✓                  | NEPM 2013 B3 & ALS QC Standard                                                |  |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X-ST | 1              | 5       | 20.00                         | 5.00              | ✓                  | NEPM 2013 B3 & ALS QC Standard                                                |  |

Page : 13 of 13

Work Order : EB1921176 Amendment 3 Client : AECOM Australia Pty Ltd

Project : 60609758



### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                      | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------|-----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture Content                                        | EA055     | SOIL   | In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Per- and Polyfluoroalkyl Substances<br>(PFAS) by LCMSMS | EP231X    | SOIL   | In-House. A portion of soil is extracted with MTBE. The extract is taken to dryness, made up in mobile phase. Analysis is by LC/MSMS, ESI Negative Mode using MRM. Where commercially available, isotopically labelled analogues of the target analytes are used as internal standards for quantification. Where a labelled analogue is not commercially available, the internal standard with similar chemistry and the closest retention time to the target is used for quantification. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. This method complies with the quality control definitions as stated in QSM 5.1. Data is reviewed in line with the DQOs as stated in QSM5.1                                                                     |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS     | EP231X-LL | WATER  | In-house: Analysis of fresh and saline waters by solid phase extraction followed by LC-Electrospray-MS-MS, Negative Mode using MRM. Where commercially available, isotopically labelled analogues of the target analytes are used as internal standards for quantification. Where a labelled analogue is not commercially available, the internal standard with similar chemistry and the closest retention time to the target is used for quantification. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. This method complies with the quality control definitions as stated in QSM 5.1. Data is reviewed in line with the DQOs as stated in QSM5.1                                                                                                    |
| Per- and Polyfluoroalkyl Substances<br>(PFAS) by LCMSMS | EP231X-ST | WATER  | In-house: Analysis of fresh and saline waters by solid phase extraction and LC-Electrospray-MS-MS, Negative Mode using MRM. This method is targeted to pristine environmental and drinking waters reporting at sub-parts per trillion. Where commercially available, isotopically labelled analogues of the target analytes are used as internal standards for quantification. Where a labelled analogue is not commercially available, the internal standard with similar chemistry and the closest retention time to the target is used for quantification. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. This method complies with the quality control definitions as stated in QSM 5.1. Data is reviewed in line with the DQOs as stated in QSM5.1 |
| Preparation Methods                                     | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sample Extraction for PFAS                              | EP231-PR  | SOIL   | In house                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SPE preparation for LL and saline PFCs                  | EP231-SPE | WATER  | In house                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



# National Measurement Institute



#### REPORT OF ANALYSIS

Page: 1 of 6 Report No. RN1244319

: AECO06/190816/3

Client : AECOM AUSTRALIA PTY LTD

LEVEL 8

540 WICKHAM STREET

 Quote No.
 : QT-02018

 Order No.
 : 60609759\_2\_0

 Date Received
 : 16-AUG-2019

: CLIENT

Job No.

Attention : JAMES PEACHEY Sampled By
Project Name : 60609758 2 0

Your Client Services Manager : Richard Coghlan Phone : 02 9449 0161

Lab Reg No. Sample Ref Sample Description

N19/020818 HH QC207\_190806 SOIL 6/08/19

| Lab Reg No.                   |                | N19/020818  |
|-------------------------------|----------------|-------------|
| Date Sampled                  |                | 06-AUG-2019 |
|                               | Units          |             |
| PFAS (per-and poly-fluoroalky | yl substances) |             |
| PFBA (375-22-4)               | mg/kg          | < 0.002     |
| PFPeA (2706-90-3)             | mg/kg          | < 0.002     |
| PFHxA (307-24-4)              | mg/kg          | < 0.001     |
| PFHpA (375-85-9)              | mg/kg          | < 0.001     |
| PFOA (335-67-1)               | mg/kg          | < 0.001     |
| PFNA (375-95-1)               | mg/kg          | < 0.001     |
| PFDA (335-76-2)               | mg/kg          | < 0.001     |
| PFUdA (2058-94-8)             | mg/kg          | < 0.002     |
| PFDoA (307-55-1)              | mg/kg          | < 0.002     |
| PFTrDA (72629-94-8)           | mg/kg          | < 0.002     |
| PFTeDA (376-06-7)             | mg/kg          | < 0.002     |
| PFHxDA (67905-19-5)           | mg/kg          | < 0.002     |
| PFODA (16517-11-6)            | mg/kg          | < 0.005     |
| FOUEA (70887-84-2)            | mg/kg          | < 0.001     |
| PFBS (375-73-5)               | mg/kg          | < 0.001     |
| PFPeS (2706-91-4)             | mg/kg          | < 0.001     |
| PFHxS (355-46-4)              | mg/kg          | < 0.001     |
| PFHpS (375-92-8)              | mg/kg          | < 0.001     |
| PFOS (1763-23-1)              | mg/kg          | 0.0026      |
| PFNS (68259-12-1)             | mg/kg          | < 0.001     |
| PFDS (335-77-3)               | mg/kg          | < 0.001     |
| PFOSA (754-91-6)              | mg/kg          | < 0.001     |
| N-MeFOSA (31506-32-8)         | mg/kg          | < 0.002     |
| N-EtFOSA (4151-50-2)          | mg/kg          | < 0.002     |
| N-MeFOSAA (2355-31-9)         | mg/kg          | < 0.002     |
| N-EtFOSAA(2991-50-6)          | mg/kg          | < 0.002     |
| N-MeFOSE (24448-09-7)         | mg/kg          | < 0.005     |
|                               |                |             |

| Method           |
|------------------|
| <br>Wictiou      |
| <br>NR70         |
| NR70             |
| <br>NR70         |
| <br>NR70         |
| NR70             |
| NR70             |
| <br>NR70         |
| <br>NR70         |
| <br>NR70         |
| <br>NR70         |
| <br>NR70<br>NR70 |
|                  |
| <br>NR70         |
| NR70             |
| <br>NR70         |
| NR70             |
| NR70             |
| <br>NR70         |
| <br>NR70         |
| <br>NR70         |
| <br>             |

Page: 2 of 6 Report No. RN1244319

| Lab Reg No.                      |              | N19/020818  |
|----------------------------------|--------------|-------------|
| Date Sampled                     | 1            | 06-AUG-2019 |
|                                  |              |             |
|                                  | Units        |             |
| PFAS (per-and poly-fluoroalkyl s | substances)  |             |
| N-EtFOSE (1691-99-2)             | mg/kg        | < 0.005     |
| 4:2 FTS (757124-72-4)            | mg/kg        | < 0.001     |
| 6:2 FTS (27619-97-2)             | mg/kg        | < 0.001     |
| 8:2 FTS (39108-34-4)             | mg/kg        | < 0.001     |
| 10:2 FTS (120226-60-0)           | mg/kg        | < 0.002     |
| 8:2 diPAP (678-41-1)             | mg/kg        | < 0.002     |
| PFBA (Surrogate Recovery)        | %            | 124         |
| PFPeA (Surrogate Recovery)       | %            | 120         |
| PFHxA (Surrogate Recovery)       | %            | 116         |
| PFHpA (Surrogate Recovery)       | %            | 122         |
| PFOA (Surrogate Recovery)        | %            | 123         |
| PFNA (Surrogate Recovery)        | %            | 123         |
| PFDA (Surrogate Recovery)        | %            | 127         |
| PFUdA (Surrogate Recovery)       | %            | 130         |
| PFDoA (Surrogate Recovery)       | %            | 126         |
| PFTeDA (Surrogate Recovery)      | %            | 127         |
| PFHxDA (Surrogate Recovery)      | %            | 131         |
| FOUEA (Surrogate Recovery)       | %            | 78          |
| PFBS (Surrogate Recovery)        | %            | 116         |
| PFHxS (Surrogate Recovery)       | %            | 120         |
| PFOS (Surrogate Recovery)        | %            | 124         |
| PFOSA (Surrogate Recovery)       | %            | 122         |
| N-MeFOSA (Surrogate Recovery     | )%           | 105         |
| N-EtFOSA (Surrogate Recovery)    | %            | 113         |
| N-MeFOSAA (Surrogate Recove      | r <b>%</b> ) | 119         |
| N-EtFOSAA (Surrogate Recover     | <b>v</b> %   | 136         |
| N-MeFOSE (Surrogate Recovery     | <b>)</b> %   | 107         |
| N-EtFOSE (Surrogate Recovery)    |              | 136         |
| 4:2 FTS (Surrogate Recovery)     | %            | 88          |
| 6:2 FTS (Surrogate Recovery)     | %            | 103         |
| 8:2 FTS (Surrogate Recovery)     | %            | 101         |
| 8:2 diPAP (Surrogate Recovery)   | %            | 59          |
| Dates                            | l .          |             |
| Date extracted                   |              | 19-AUG-2019 |
| Date analysed                    |              | 21-AUG-2019 |

| _ | 110port 140. 11141244010 |
|---|--------------------------|
|   |                          |
|   |                          |
|   | Method                   |
|   | Wethou                   |
|   | NR70                     |
|   |                          |
|   |                          |
|   |                          |
|   |                          |

N19/020818

to

Page: 3 of 6 Report No. RN1244319

#### N19/020822:

PFOS is quantified using a combined branched and linear standard,

linear and branched isomers are totalled for reporting.

All results corrected for labelled surrogate recoveries.

Selected PFAS surrogate recoveries are biased due to matrix effects.

FOUEA Surrogate Recovery was not reported.

LORs raised for selected analytes due to low surrogate recoveries.

oogle

Danny Slee, Section Manager

Organic - NSW

Accreditation No. 198

28-AUG-2019

| Lab Reg No.    |       | N19/020818 |  |
|----------------|-------|------------|--|
| Date Sampled   |       | 06-AUG-201 |  |
|                |       |            |  |
|                | Units |            |  |
| Trace Elements |       |            |  |
| Total Solids   | %     | 92.5       |  |

Method
NT2 49

Pankaj/Barai, Analyst Inorganics - NSW Accreditation No. 198

28-AUG-2019

All results are expressed on a dry weight basis.

Page: 4 of 6 Report No. RN1244319

Client : AECOM AUSTRALIA PTY LTD Job No. : AECO06/190816/3

LEVEL 8

540 WICKHAM STREET **Order No.** : 60609759\_2\_0

Date Received : 16-AUG-2019

: QT-02018

Quote No.

Attention : JAMES PEACHEY Sampled By : CLIENT

Project Name: 60609758 2 0

Your Client Services Manager : Richard Coghlan Phone : 02 9449 0161

| Lab Reg No. | Sample Ref      | Sample Description |
|-------------|-----------------|--------------------|
| N19/020817  | HH_QC206_190806 | WATER 6/08/19      |

| Lab Reg No.                   |                | N19/020817  |
|-------------------------------|----------------|-------------|
| Date Sampled                  |                | 06-AUG-2019 |
|                               |                |             |
|                               | Units          |             |
| PFAS (per-and poly-fluoroalky | yl substances) |             |
| PFBA (375-22-4)               | ug/L           | 0.0099      |
| PFPeA (2706-90-3)             | ug/L           | 0.019       |
| PFHxA (307-24-4)              | ug/L           | 0.032       |
| PFHpA (375-85-9)              | ug/L           | 0.019       |
| PFOA (335-67-1)               | ug/L           | 0.0075      |
| PFNA (375-95-1)               | ug/L           | < 0.001     |
| PFDA (335-76-2)               | ug/L           | < 0.001     |
| PFUdA (2058-94-8)             | ug/L           | < 0.001     |
| PFDoA (307-55-1)              | ug/L           | < 0.001     |
| PFTrDA (72629-94-8)           | ug/L           | < 0.002     |
| PFTeDA (376-06-7)             | ug/L           | < 0.002     |
| PFHxDA (67905-19-5)           | ug/L           | < 0.002     |
| PFODA (16517-11-6)            | ug/L           | < 0.005     |
| FOUEA (70887-84-2)            | ug/L           | < 0.001     |
| PFBS (375-73-5)               | ug/L           | 0.041       |
| PFPeS (2706-91-4)             | ug/L           | 0.024       |
| PFHxS (355-46-4)              | ug/L           | 0.18        |
| PFHpS (375-92-8)              | ug/L           | 0.0062      |
| PFOS (1763-23-1)              | ug/L           | 3.5         |
| PFNS (68259-12-1)             | ug/L           | < 0.001     |
| PFDS (335-77-3)               | ug/L           | < 0.001     |
| PFOSA (754-91-6)              | ug/L           | < 0.001     |
| N-MeFOSA (31506-32-8)         | ug/L           | < 0.002     |
| N-EtFOSA (4151-50-2)          | ug/L           | < 0.002     |
| N-MeFOSAA (2355-31-9)         | ug/L           | < 0.002     |
| N-EtFOSAA(2991-50-6)          | ug/L           | < 0.002     |

| Method |
|--------|
| ND70   |
| NR70   |
|        |

| Pag | ge: | 5   | of | 6  |    |
|-----|-----|-----|----|----|----|
| Э.  | RN  | 11: | 24 | 43 | 19 |

| Lab Reg No.     |                    |              | N19/020817  |
|-----------------|--------------------|--------------|-------------|
| Date Sampled    |                    |              | 06-AUG-2019 |
|                 |                    |              |             |
|                 |                    | Units        |             |
| PFAS (per-and p | ooly-fluoroalkyl s | ubstances)   |             |
| N-MeFOSE (244   | 148-09-7)          | ug/L         | < 0.005     |
| N-EtFOSE (169   | 1-99-2)            | ug/L         | < 0.005     |
| 4:2 FTS (75712  | 24-72-4)           | ug/L         | < 0.001     |
| 6:2 FTS (27619  | 9-97-2)            | ug/L         | 1.5         |
| 8:2 FTS (39108  | 3-34-4)            | ug/L         | < 0.001     |
| 10:2 FTS (1202  | 226-60-0)          | ug/L         | < 0.001     |
| 8:2 diPAP (678  | -41-1)             | ug/L         | < 0.002     |
| PFBA (Surrogate | e Recovery)        | %            | 116         |
| PFPeA (Surroga  | te Recovery)       | %            | 107         |
| PFHxA (Surroga  | te Recovery)       | %            | 104         |
| PFHpA (Surroga  | ate Recovery)      | %            | 108         |
| PFOA (Surrogat  | e Recovery)        | %            | 106         |
| PFNA (Surrogat  | e Recovery)        | %            | 71          |
| PFDA (Surrogat  | e Recovery)        | %            | 106         |
| PFUdA (Surroga  | ate Recovery)      | %            | 87          |
| PFDoA (Surroga  | ate Recovery)      | %            | 74          |
| PFTeDA (Surrog  | gate Recovery)     | %            | 90          |
| PFHxDA (Surrog  | gate Recovery)     | %            | 132         |
| FOUEA (Surroga  | ate Recovery)      | %            | 71          |
| PFBS (Surrogate | e Recovery)        | %            | 104         |
| PFHxS (Surroga  | te Recovery)       | %            | 102         |
| PFOS (Surrogate | e Recovery)        | %            | 97          |
| PFOSA (Surroga  | ate Recovery)      | %            | 90          |
| N-MeFOSA (Sur   | rogate Recovery    | )%           | 75          |
| N-EtFOSA (Surr  | ogate Recovery)    | %            | 56          |
| N-MeFOSAA (S    | urrogate Recove    | r <b>9</b> 3 | 72          |
| N-EtFOSAA (Su   | rrogate Recover    | /9/0         | 93          |
| N-MeFOSE (Sur   | rogate Recovery    | )%           | 133         |
| N-EtFOSE (Surre | ogate Recovery)    | %            | 65          |
| 4:2 FTS (Surrog | gate Recovery)     | %            | 68          |
| 6:2 FTS (Surrog | gate Recovery)     | %            | 81          |
| 8:2 FTS (Surrog | gate Recovery)     | %            | 86          |
| 8:2 diPAP (Surr | ogate Recovery)    | %            | 66          |
| Dates           |                    |              |             |
| Date extracted  |                    |              | 23-AUG-2019 |
| Date analysed   |                    |              | 23-AUG-2019 |

| /lethod      |
|--------------|
| ID70         |
| IR70         |
| IR70<br>IR70 |
| IR70         |
|              |
|              |
|              |

| Lab Reg No.  |       | N19/020817  |
|--------------|-------|-------------|
| Date Sampled |       | 06-AUG-2019 |
|              |       |             |
|              | Units |             |

Page: 6 of 6 No. RN1244319 Method

Danny Slee, Section Manager

Accreditation No. 198

28-AUG-2019

Organic - NSW



Accredited for compliance with ISO/IEC 17025 - Testing. This report shall not be reproduced except in full. Results relate only to the sample(s) tested.

This Report supersedes reports: RN1244317

Measurement Uncertainty is available upon request.



## Australian Government

#### **National Measurement Institute**

### **QUALITY ASSURANCE REPORT**

Client: AECOM Australia Pty Ltd

AECO06/190816/3 **NMI QA Report No:** Sample Matrix: Liquid

| Analyte                | Method       | LOR   | Blank   | Sam      | ple Duplicates | Recoveries |     |              |
|------------------------|--------------|-------|---------|----------|----------------|------------|-----|--------------|
| -                      |              |       |         | Sample   | Duplicate      | RPD        | LCS | Matrix Spike |
|                        |              | ug/L  | ug/L    | ug/L     | ug/L           | %          | %   | %            |
| PFBA (375-22-4)        | NR70         | 0.005 | <0.005  | NA       | NA             | NA         | 130 | NA           |
| PFPeA (2706-90-3)      | NR70         | 0.003 | <0.003  | NA<br>NA | NA<br>NA       | NA<br>NA   | 97  | NA<br>NA     |
| PFHxA (307-24-4)       | NR70         | 0.002 | <0.002  | NA<br>NA | NA<br>NA       | NA<br>NA   | 96  | NA<br>NA     |
| PFHpA (375-85-9)       | NR70         | 0.001 | <0.001  | NA<br>NA | NA<br>NA       | NA<br>NA   | 96  | NA<br>NA     |
| PFOA (375-65-9)        | NR70         | 0.001 | <0.001  | NA<br>NA | NA<br>NA       | NA<br>NA   | 100 | NA<br>NA     |
| ,                      | NR70         | 0.001 | <0.001  | NA<br>NA | NA<br>NA       | NA<br>NA   | 100 | NA<br>NA     |
| PFNA (375-95-1)        | NR70<br>NR70 |       | <0.001  | NA<br>NA | NA<br>NA       | NA<br>NA   | 104 | NA<br>NA     |
| PFDA (335-76-2)        | _            | 0.001 |         |          |                |            |     |              |
| PFUdA (2058-94-8)      | NR70         | 0.001 | <0.001  | NA       | NA             | NA         | 83  | NA           |
| PFDoA (307-55-1)       | NR70         | 0.001 | <0.001  | NA       | NA             | NA         | 80  | NA           |
| PFTrDA (72629-94-8)    | NR70         | 0.002 | <0.002  | NA       | NA             | NA         | 90  | NA           |
| PFTeDA (376-06-7)      | NR70         | 0.002 | <0.002  | NA       | NA             | NA         | 106 | NA           |
| PFHxDA (67905-19-5)    | NR70         | 0.002 | <0.002  | NA       | NA             | NA         | 86  | NA           |
| PFODA (16517-11-6)     | NR70         | 0.005 | <0.005  | NA       | NA             | NA         | 85  | NA           |
| FOUEA (70887-84-2)     | NR70         | 0.001 | <0.001  | NA       | NA             | NA         | 90  | NA           |
| PFBS (375-73-5)        | NR70         | 0.001 | <0.001  | NA       | NA             | NA         | 100 | NA           |
| PFPeS (2706-91-4)      | NR70         | 0.001 | <0.001  | NA       | NA             | NA         | 99  | NA           |
| PFHxS (355-46-4)       | NR70         | 0.001 | <0.001  | NA       | NA             | NA         | 104 | NA           |
| PFHpS (375-92-8)       | NR70         | 0.001 | <0.001  | NA       | NA             | NA         | 101 | NA           |
| PFOS (1763-23-1)       | NR70         | 0.002 | <0.002  | NA       | NA             | NA         | 99  | NA           |
| PFNS (68259-12-1)      | NR70         | 0.001 | <0.001  | NA       | NA             | NA         | 98  | NA           |
| PFDS (335-77-3)        | NR70         | 0.001 | <0.001  | NA       | NA             | NA         | 97  | NA           |
| PFOSA (754-91-6)       | NR70         | 0.001 | <0.001  | NA       | NA             | NA         | 96  | NA           |
| N-MeFOSA (31506-32-8)  | NR70         | 0.002 | <0.002  | NA       | NA             | NA         | 93  | NA           |
| N-EtFOSA (4151-50-2)   | NR70         | 0.002 | < 0.002 | NA       | NA             | NA         | 108 | NA           |
| N-MeFOSAA (2355-31-9)  | NR70         | 0.002 | <0.002  | NA       | NA             | NA         | 91  | NA           |
| N-EtFOSAA(2991-50-6)   | NR70         | 0.002 | <0.002  | NA       | NA             | NA         | 98  | NA           |
| N-MeFOSE (24448-09-7)  | NR70         | 0.005 | <0.005  | NA       | NA             | NA         | 109 | NA           |
| N-EtFOSE (1691-99-2)   | NR70         | 0.005 | <0.005  | NA       | NA             | NA         | 91  | NA           |
| 4:2 FTS (757124-72-4)  | NR70         | 0.001 | <0.001  | NA       | NA             | NA         | 98  | NA           |
| 6:2 FTS (27619-97-2)   | NR70         | 0.001 | <0.001  | NA       | NA             | NA         | 97  | NA           |
| 8:2 FTS (39108-34-4)   | NR70         | 0.001 | <0.001  | NA       | NA             | NA         | 106 | NA           |
| 10:2 FTS (120226-60-0) | NR70         | 0.001 | <0.001  | NA       | NA             | NA         | 112 | NA           |
| 8:2 diPAP (678-41-1)   | NR70         | 0.002 | <0.002  | NA       | NA             | NA         | 103 | NA           |

Results expressed in percentage (%) or ug/L wherever appropriate.

Acceptable Spike recovery is 50-150%.

Maximum acceptable RPDs on spikes and duplicates is 40%.

'NA' = Not Applicable.

RPD= Relative Percentage Difference.

Signed:

Danny Slee Organics Manager, NMI-North Ryde

Eller

Date: 28/08/2019



### **Australian Government**

### **National Measurement Institute**

### **QUALITY ASSURANCE REPORT**

Client: AECOM Australia Pty Ltd

NMI QA Report No: AECO06/190813/3 Sample Matrix: Solid

| Analyte                | Method | LOR   | Blank   | Sam    | ple Duplicates |     | Recoveries |              |  |
|------------------------|--------|-------|---------|--------|----------------|-----|------------|--------------|--|
|                        |        |       |         | Sample | Duplicate      | RPD | LCS        | Matrix Spike |  |
|                        |        | mg/kg | mg/kg   | mg/kg  | mg/kg          | %   | %          | %            |  |
|                        |        |       |         |        |                |     |            |              |  |
| PFBA (375-22-4)        | NR70   | 0.002 | <0.002  | NA     | NA             | NA  | 110        | NA           |  |
| PFPeA (2706-90-3)      | NR70   | 0.002 | <0.002  | NA     | NA             | NA  | 97         | NA           |  |
| PFHxA (307-24-4)       | NR70   | 0.001 | <0.001  | NA     | NA             | NA  | 101        | NA           |  |
| PFHpA (375-85-9)       | NR70   | 0.001 | <0.001  | NA     | NA             | NA  | 94         | NA           |  |
| PFOA (335-67-1)        | NR70   | 0.001 | <0.001  | NA     | NA             | NA  | 99         | NA           |  |
| PFNA (375-95-1)        | NR70   | 0.001 | <0.001  | NA     | NA             | NA  | 86         | NA           |  |
| PFDA (335-76-2)        | NR70   | 0.001 | <0.001  | NA     | NA             | NA  | 99         | NA           |  |
| PFUdA (2058-94-8)      | NR70   | 0.002 | <0.002  | NA     | NA             | NA  | 100        | NA           |  |
| PFDoA (307-55-1)       | NR70   | 0.002 | <0.002  | NA     | NA             | NA  | 106        | NA           |  |
| PFTrDA (72629-94-8)    | NR70   | 0.002 | <0.002  | NA     | NA             | NA  | 100        | NA           |  |
| PFTeDA (376-06-7)      | NR70   | 0.002 | <0.002  | NA     | NA             | NA  | 104        | NA           |  |
| PFHxDA (67905-19-5)    | NR70   | 0.002 | <0.002  | NA     | NA             | NA  | 89         | NA           |  |
| PFODA (16517-11-6)     | NR70   | 0.005 | < 0.005 | NA     | NA             | NA  | 86         | NA           |  |
| FOUEA (70887-84-2)     | NR70   | 0.001 | <0.001  | NA     | NA             | NA  | 99         | NA           |  |
| PFBS (375-73-5)        | NR70   | 0.001 | <0.001  | NA     | NA             | NA  | 97         | NA           |  |
| PFPeS (2706-91-4)      | NR70   | 0.001 | < 0.001 | NA     | NA             | NA  | 97         | NA           |  |
| PFHxS (355-46-4)       | NR70   | 0.001 | <0.001  | NA     | NA             | NA  | 96         | NA           |  |
| PFHpS (375-92-8)       | NR70   | 0.001 | <0.001  | NA     | NA             | NA  | 92         | NA           |  |
| PFOS (1763-23-1)       | NR70   | 0.002 | < 0.002 | NA     | NA             | NA  | 110        | NA           |  |
| PFNS (68259-12-1)      | NR70   | 0.001 | <0.001  | NA     | NA             | NA  | 94         | NA           |  |
| PFDS (335-77-3)        | NR70   | 0.001 | <0.001  | NA     | NA             | NA  | 97         | NA           |  |
| PFOSA (754-91-6)       | NR70   | 0.001 | < 0.001 | NA     | NA             | NA  | 99         | NA           |  |
| N-MeFOSA (31506-32-8)  | NR70   | 0.002 | <0.002  | NA     | NA             | NA  | 101        | NA           |  |
| N-EtFOSA (4151-50-2)   | NR70   | 0.002 | <0.002  | NA     | NA             | NA  | 90         | NA           |  |
| N-MeFOSAA (2355-31-9)  | NR70   | 0.002 | < 0.002 | NA     | NA             | NA  | 102        | NA           |  |
| N-EtFOSAA(2991-50-6)   | NR70   | 0.002 | < 0.002 | NA     | NA             | NA  | 91         | NA           |  |
| N-MeFOSE (24448-09-7)  | NR70   | 0.005 | < 0.005 | NA     | NA             | NA  | 87         | NA           |  |
| N-EtFOSE (1691-99-2)   | NR70   | 0.005 | < 0.005 | NA     | NA             | NA  | 79         | NA           |  |
| 4:2 FTS (757124-72-4)  | NR70   | 0.001 | <0.001  | NA     | NA             | NA  | 91         | NA           |  |
| 6:2 FTS (27619-97-2)   | NR70   | 0.001 | <0.001  | NA     | NA             | NA  | 86         | NA           |  |
| 8:2 FTS (39108-34-4)   | NR70   | 0.001 | <0.001  | NA     | NA             | NA  | 100        | NA           |  |
| 10:2 FTS (120226-60-0) | NR70   | 0.002 | <0.002  | NA     | NA             | NA  | 94         | NA           |  |
| 8:2 diPAP (678-41-1)   | NR70   | 0.002 | <0.002  | NA     | NA             | NA  | 93         | NA           |  |

Results expressed in percentage (%) or mg/kg wherever appropriate. Acceptable Spike recovery is 50-150%.

Maximum acceptable RPDs on spikes and duplicates is 40%.

'NA' = Not Applicable.

RPD= Relative Percentage Difference.

Signed:

**Danny Slee** 

Organics Manager, NMI-North Ryde

Eller

Date: 26/08/2019

From: Peachey, James < james.peachey@aecom.com >

Sent: Tuesday, 13 August 2019 3:34 PM

To: Carsten Emrich < Carsten. Emrich@alsglobal.com >

Subject: [EXTERNAL] - Additional analysis

**CAUTION:** This email originated from outside of ALS. Do not click links or open attachments unless you recognize the sender and are sure content is relevant to you.

Hi Carsten

Please could you arrange for the following samples to be analysed for TOPA (EP231X-TOP):

EB1919840-016 HH\_SS1\_0.5

Regards

**James Peachey** 

Associate Director - Environment D +61 7 3553 3909 M +61 426 206 362 james.peachey@aecom.com

**AECOM** 

Level 8, 540 Wickham Street, Fortitude Valley, QLD 4006 PO Box 1307 Fortitude Valley QLD 4006 T +61 7 3553 2000 F +61 7 3553 2050 aecom.com

Imagine it. Delivered.

LinkedIn Twitter Facebook Instagram

Environmental Division Brisbane Work Order Reference EB1921187



Telephone: + 61-7-3243 7222



### **CERTIFICATE OF ANALYSIS**

**Work Order** : EB1921187-AC Page : 1 of 5

Amendment : 1

Client : AECOM Australia Pty Ltd

Contact : MR JAMES PEACHEY Contact

Address

Brisbane

Telephone : +61 07 3553 2000

**Project** 60609758 HH

Order number 60609758

C-O-C number

Sampler : CAMDEN McCOSKER

Site

Quote number : BN/112/19

No. of samples received : 1 No. of samples analysed : 1

Laboratory : Environmental Division Brisbane

: Carsten Emrich

: 2 Byth Street Stafford QLD Australia 4053 Address

Telephone : +61 7 3552 8616 **Date Samples Received** : 13-Aug-2019 15:34

Date Analysis Commenced : 16-Aug-2019

Issue Date : 27-Aug-2019 13:02



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.** 

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Diana Mesa 2IC Organic Chemist Brisbane Organics, Stafford, QLD Kim McCabe Senior Inorganic Chemist Brisbane Inorganics, Stafford, QLD Page : 2 of 5

Work Order : EB1921187-AC Amendment 1
Client : AECOM Australia Pty Ltd
Project : 60609758 HH,



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

•

• Amendment (27/8/19): This report has been amended to split samples into individual work orders. All analysis results are as per the previous report

3 of 5 EB1921187-AC Amendment 1 Work Order : AECOM Australia Pty Ltd : 60609758 \_HH, Client Project



## Analytical Results

| Sub-Matrix: SOIL (Matrix: SOIL)               | atrix: SOIL) |              |                |                   | <br> | <br> |
|-----------------------------------------------|--------------|--------------|----------------|-------------------|------|------|
|                                               | C            | lient sampli | ng date / time | 24-Jul-2019 00:00 | <br> | <br> |
| Compound                                      | CAS Number   | LOR          | Unit           | EB1921187-003     | <br> | <br> |
|                                               |              |              |                | Result            | <br> | <br> |
| EA055: Moisture Content (Dried @ 10           | 5-110°C)     |              |                |                   |      |      |
| Moisture Content                              |              | 0.1          | %              | 6.2               | <br> | <br> |
| EP231_TOP_A: Perfluoroalkyl Sulfoni           | ic Acids     |              |                |                   |      |      |
| Perfluorobutane sulfonic acid (PFBS)          | 375-73-5     | 0.0002       | mg/kg          | <0.0002           | <br> | <br> |
| Perfluoropentane sulfonic acid (PFPeS)        | 2706-91-4    | 0.0002       | mg/kg          | <0.0002           | <br> | <br> |
| Perfluorohexane sulfonic acid (PFHxS)         | 355-46-4     | 0.0002       | mg/kg          | 0.0004            | <br> | <br> |
| Perfluoroheptane sulfonic acid (PFHpS)        | 375-92-8     | 0.0002       | mg/kg          | <0.0002           | <br> | <br> |
| Perfluorooctane sulfonic acid (PFOS)          | 1763-23-1    | 0.0002       | mg/kg          | 0.148             | <br> | <br> |
| Perfluorodecane sulfonic acid (PFDS)          | 335-77-3     | 0.0002       | mg/kg          | <0.0002           | <br> | <br> |
| EP231_TOP_B: Perfluoroalkyl Carbox            | ylic Acids   |              |                |                   |      |      |
| Perfluorobutanoic acid (PFBA)                 | 375-22-4     | 0.001        | mg/kg          | 0.002             | <br> | <br> |
| Perfluoropentanoic acid (PFPeA)               | 2706-90-3    | 0.0002       | mg/kg          | 0.0029            | <br> | <br> |
| Perfluorohexanoic acid (PFHxA)                | 307-24-4     | 0.0002       | mg/kg          | 0.0016            | <br> | <br> |
| Perfluoroheptanoic acid (PFHpA)               | 375-85-9     | 0.0002       | mg/kg          | 0.0010            | <br> | <br> |
| Perfluorooctanoic acid (PFOA)                 | 335-67-1     | 0.0002       | mg/kg          | 0.0008            | <br> | <br> |
| Perfluorononanoic acid (PFNA)                 | 375-95-1     | 0.0002       | mg/kg          | 0.0016            | <br> | <br> |
| Perfluorodecanoic acid (PFDA)                 | 335-76-2     | 0.0002       | mg/kg          | 0.0006            | <br> | <br> |
| Perfluoroundecanoic acid (PFUnDA)             | 2058-94-8    | 0.0002       | mg/kg          | <0.0002           | <br> | <br> |
| Perfluorododecanoic acid (PFDoDA)             | 307-55-1     | 0.0002       | mg/kg          | <0.0002           | <br> | <br> |
| Perfluorotridecanoic acid (PFTrDA)            | 72629-94-8   | 0.0002       | mg/kg          | <0.0002           | <br> | <br> |
| Perfluorotetradecanoic acid (PFTeDA)          | 376-06-7     | 0.0005       | mg/kg          | <0.0005           | <br> | <br> |
| EP231_TOP_C: Perfluoroalkyl Sulfon            | amides       |              |                |                   |      |      |
| Perfluorooctane sulfonamide (FOSA)            | 754-91-6     | 0.0002       | mg/kg          | <0.0002           | <br> | <br> |
| N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8   | 0.0005       | mg/kg          | <0.0005           | <br> | <br> |

: 4 of 5 : EB1921187-AC Amendment 1 Work Order : AECOM Australia Pty Ltd : 60609758 \_HH, Client Project



## Analytical Results

| Sub-Matrix: SOIL<br>(Matrix: SOIL)                              |                        | Clie         | ent sample ID  | HH_SS1_0.5_190724 |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------|------------------------|--------------|----------------|-------------------|--|--|--|--|--|--|--|--|
|                                                                 | C                      | lient sampli | ng date / time | 24-Jul-2019 00:00 |  |  |  |  |  |  |  |  |
| Compound                                                        | CAS Number             | LOR          | Unit           | EB1921187-003     |  |  |  |  |  |  |  |  |
|                                                                 |                        |              |                | Result            |  |  |  |  |  |  |  |  |
| EP231_TOP_C: Perfluoroalkyl Sulfona                             | amides - Continued     |              |                |                   |  |  |  |  |  |  |  |  |
| N-Ethyl perfluorooctane sulfonamide (EtFOSA)                    | 4151-50-2              | 0.0005       | mg/kg          | <0.0005           |  |  |  |  |  |  |  |  |
| N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)            | 24448-09-7             | 0.0005       | mg/kg          | <0.0005           |  |  |  |  |  |  |  |  |
| N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)             | 1691-99-2              | 0.0005       | mg/kg          | <0.0005           |  |  |  |  |  |  |  |  |
| N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | 2355-31-9              | 0.0002       | mg/kg          | <0.0002           |  |  |  |  |  |  |  |  |
| N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA)  | 2991-50-6              | 0.0002       | mg/kg          | <0.0002           |  |  |  |  |  |  |  |  |
| EP231_TOP_D: (n:2) Fluorotelomer Su                             | Ifonic Acids           |              |                |                   |  |  |  |  |  |  |  |  |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                       | 757124-72-4            | 0.0005       | mg/kg          | <0.0005           |  |  |  |  |  |  |  |  |
| 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                       | 27619-97-2             | 0.0005       | mg/kg          | <0.0005           |  |  |  |  |  |  |  |  |
| 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                       | 39108-34-4             | 0.0005       | mg/kg          | <0.0005           |  |  |  |  |  |  |  |  |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                     | 120226-60-0            | 0.0005       | mg/kg          | <0.0005           |  |  |  |  |  |  |  |  |
| EP231_TOP_P: PFAS Sums                                          |                        |              |                |                   |  |  |  |  |  |  |  |  |
| Sum of PFAS                                                     |                        | 0.0002       | mg/kg          | 0.159             |  |  |  |  |  |  |  |  |
| Sum of PFHxS and PFOS                                           | 355-46-4/1763-23-<br>1 | 0.0002       | mg/kg          | 0.148             |  |  |  |  |  |  |  |  |
| Sum of TOP C4 - C14 Carboxylates and C - C8 Sulfonates          | :4                     | 0.0002       | mg/kg          | 0.159             |  |  |  |  |  |  |  |  |
| Sum of TOP C4 - C14 as Fluorine                                 |                        | 0.0002       | mg/kg          | 0.103             |  |  |  |  |  |  |  |  |
| EP231_TOP_S: PFAS Surrogate                                     |                        |              |                |                   |  |  |  |  |  |  |  |  |
| 13C4-PFOS                                                       |                        | 0.0002       | %              | 89.0              |  |  |  |  |  |  |  |  |
| 13C8-PFOA                                                       |                        | 0.0002       | %              | 88.5              |  |  |  |  |  |  |  |  |
|                                                                 |                        |              |                |                   |  |  |  |  |  |  |  |  |

5 of 5 EB1921187-AC Amendment 1 Work Order : AECOM Australia Pty Ltd : 60609758 \_HH Client Project



## Surrogate Control Limits

| Sub-Matrix: SOIL            | Recovery Limits (%) |     |      |  |
|-----------------------------|---------------------|-----|------|--|
| Compound                    | CAS Number          | Low | High |  |
| EP231_TOP_S: PFAS Surrogate |                     |     |      |  |
| 13C4-PFOS                   |                     | 60  | 130  |  |
| 13C8-PFOA                   |                     | 60  | 130  |  |



#### **QUALITY CONTROL REPORT**

Issue Date

· 27-Aug-2019

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

**Work Order** : **EB1921187-AC** Page : 1 of 5

Amendment : 1

Client : AECOM Australia Pty Ltd Laboratory : Environmental Division Brisbane

Contact : MR JAMES PEACHEY Contact : Carsten Emrich

Address : 2 Byth Street Stafford QLD Australia 4053

Brisbane : +61 07 3553 2000 Telephone

 Telephone
 : +61 07 3553 2000

 Project
 : 60609758

 HH
 Date Samples Received
 : 13-Aug-2019

Order number : 60609758 Date Analysis Commenced : 16-Aug-2019

C-O-C number : ----

Sampler : CAMDEN McCOSKER

: 1

This Quality Control Report contains the following information:

Site : ----

No. of samples received

Quote number : BN/112/19

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Diana Mesa 2IC Organic Chemist Brisbane Organics, Stafford, QLD Kim McCabe Senior Inorganic Chemist Brisbane Inorganics, Stafford, QLD

Page : 2 of 5

Work Order : EB1921187-AC Amendment 1
Client : AECOM Australia Pty Ltd
Project : 60609758 HH



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: SOIL     |                        |                                                |            |        |       | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|------------------------|------------------------------------------------|------------|--------|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID       | Method: Compound                               | CAS Number | LOR    | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EA055: Moisture Co   | ntent (Dried @ 105-110 | 0°C) (QC Lot: 2527602)                         |            |        |       |                 |                        |         |                     |
| EB1921187-001        | Anonymous              | EA055: Moisture Content                        |            | 0.1    | %     | 14.6            | 14.5                   | 0.706   | 0% - 20%            |
| EP231_TOP_A: Perf    | luoroalkyl Sulfonic Ac | ids (QC Lot: 2527289)                          |            |        |       |                 |                        |         |                     |
| EB1921187-001        | Anonymous              | EP231X: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5   | 0.0002 | mg/kg | 0.0093          | 0.0102                 | 9.42    | 0% - 20%            |
|                      |                        | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4  | 0.0002 | mg/kg | 0.0064          | 0.0072                 | 10.7    | 0% - 20%            |
|                      |                        | EP231X: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4   | 0.0002 | mg/kg | 0.101           | 0.106                  | 4.32    | 0% - 20%            |
|                      |                        | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8   | 0.0002 | mg/kg | 0.0162          | 0.0148                 | 9.04    | 0% - 20%            |
|                      |                        | EP231X: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1  | 0.0002 | mg/kg | 1.83            | 2.05                   | 11.3    | 0% - 20%            |
|                      |                        | EP231X: Perfluorodecane sulfonic acid (PFDS)   | 335-77-3   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
| EP231_TOP_B: Perf    | luoroalkyl Carboxylic  | Acids (QC Lot: 2527289)                        |            |        |       |                 |                        |         |                     |
| EB1921187-001 Anon   | Anonymous              | EP231X: Perfluoropentanoic acid (PFPeA)        | 2706-90-3  | 0.0002 | mg/kg | 0.0883          | 0.105                  | 17.4    | 0% - 20%            |
|                      | ,                      | EP231X: Perfluorohexanoic acid (PFHxA)         | 307-24-4   | 0.0002 | mg/kg | 0.109           | 0.119                  | 8.85    | 0% - 20%            |
|                      |                        | EP231X: Perfluoroheptanoic acid (PFHpA)        | 375-85-9   | 0.0002 | mg/kg | 0.0241          | 0.0253                 | 5.06    | 0% - 20%            |
|                      |                        | EP231X: Perfluorooctanoic acid (PFOA)          | 335-67-1   | 0.0002 | mg/kg | 0.0357          | 0.0361                 | 1.08    | 0% - 20%            |
|                      |                        | EP231X: Perfluorononanoic acid (PFNA)          | 375-95-1   | 0.0002 | mg/kg | 0.183           | 0.164                  | 11.3    | 0% - 20%            |
|                      |                        | EP231X: Perfluorodecanoic acid (PFDA)          | 335-76-2   | 0.0002 | mg/kg | 0.0344          | # 0.0258               | 28.6    | 0% - 20%            |
|                      |                        | EP231X: Perfluoroundecanoic acid (PFUnDA)      | 2058-94-8  | 0.0002 | mg/kg | 0.0246          | # 0.0186               | 27.7    | 0% - 20%            |
|                      |                        | EP231X: Perfluorododecanoic acid (PFDoDA)      | 307-55-1   | 0.0002 | mg/kg | 0.0002          | <0.0002                | 0.00    | No Limit            |
|                      |                        | EP231X: Perfluorotridecanoic acid (PFTrDA)     | 72629-94-8 | 0.0002 | mg/kg | 0.0012          | 0.0013                 | 9.02    | No Limit            |
|                      |                        | EP231X: Perfluorotetradecanoic acid (PFTeDA)   | 376-06-7   | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                        | EP231X: Perfluorobutanoic acid (PFBA)          | 375-22-4   | 0.001  | mg/kg | 0.028           | 0.030                  | 4.66    | 0% - 20%            |
| EP231_TOP_C: Per     | fluoroalkyl Sulfonamic | les (QC Lot: 2527289)                          |            |        |       |                 |                        |         |                     |
| EB1921187-001        | Anonymous              | EP231X: Perfluorooctane sulfonamide (FOSA)     | 754-91-6   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                        | EP231X: N-Methyl perfluorooctane               | 2355-31-9  | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                        | sulfonamidoacetic acid (MeFOSAA)               |            |        |       |                 |                        |         |                     |

Page : 3 of 5

Work Order : EB1921187-AC Amendment 1
Client : AECOM Australia Pty Ltd
Project : 60609758 \_ HH



| Sub-Matrix: SOIL     |                         |                                                              |                        |        |       | Laboratory I    | Ouplicate (DUP) Report |         |                     |
|----------------------|-------------------------|--------------------------------------------------------------|------------------------|--------|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                                             | CAS Number             | LOR    | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231_TOP_C: Perf    | fluoroalkyl Sulfonamide | es (QC Lot: 2527289) - continued                             |                        |        |       |                 |                        |         |                     |
| EB1921187-001        | Anonymous               | EP231X: N-Ethyl perfluorooctane                              | 2991-50-6              | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                         | sulfonamidoacetic acid (EtFOSAA)                             |                        |        |       |                 |                        |         |                     |
|                      |                         | EP231X: N-Methyl perfluorooctane sulfonamide                 | 31506-32-8             | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                         | (MeFOSA)                                                     |                        |        |       |                 |                        |         |                     |
|                      |                         | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)         | 4151-50-2              | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                         | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7             | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                         | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)  | 1691-99-2              | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
| EP231 TOP D: (n:2)   | Fluorotelomer Sulfonio  | c Acids (QC Lot: 2527289)                                    |                        |        |       |                 |                        |         |                     |
| EB1921187-001        | Anonymous               | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2                 | 757124-72-4            | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      | Albityffious            | FTS)                                                         |                        |        |       |                 |                        |         |                     |
|                      |                         | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2                 | 27619-97-2             | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                         | FTS)                                                         |                        |        |       |                 |                        |         |                     |
|                      |                         | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2                 | 39108-34-4             | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                         | FTS)                                                         |                        |        |       |                 |                        |         |                     |
|                      |                         | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2               | 120226-60-0            | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                         | FTS)                                                         |                        |        |       |                 |                        |         |                     |
|                      | S Sums (QC Lot: 25272   | 289)                                                         |                        |        |       |                 |                        |         |                     |
| EB1921187-001        | Anonymous               | EP231X: Sum of PFAS                                          |                        | 0.0002 | mg/kg | 2.49            | 2.71                   | 8.53    | 0% - 20%            |
|                      |                         | EP231X: Sum of PFHxS and PFOS                                | 355-46-4/1763-<br>23-1 | 0.0002 | mg/kg | 1.93            | 2.16                   | 11.0    | 0% - 20%            |
|                      |                         | EP231X: Sum of TOP C4 - C14 Carboxylates and                 |                        | 0.0002 | mg/kg | 2.49            | 2.71                   | 8.53    | 0% - 20%            |
|                      |                         | C4 - C8 Sulfonates                                           |                        |        |       |                 |                        |         |                     |
|                      |                         | EP231X: Sum of TOP C4 - C14 as Fluorine                      |                        | 0.0002 | mg/kg | 1.62            | 1.76                   | 8.36    | 0% - 20%            |

Page : 4 of 5

Work Order : EB1921187-AC Amendment 1
Client : AECOM Australia Pty Ltd
Project : 60609758 \_HH



### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| ub-Matrix: <b>SOIL</b>                                           |               |        |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |
|------------------------------------------------------------------|---------------|--------|-------|-------------------|---------------------------------------|--------------------|----------|------------|
|                                                                  |               |        |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                                                 | CAS Number    | LOR    | Unit  | Result            | Concentration                         | LCS                | Low      | High       |
| EP231_TOP_A: Perfluoroalkyl Sulfonic Acids (QCLot: 2             | 2527289)      |        |       |                   |                                       |                    |          |            |
| EP231X: Perfluorobutane sulfonic acid (PFBS)                     | 375-73-5      | 0.0002 | mg/kg | <0.0002           |                                       |                    |          |            |
| EP231X: Perfluoropentane sulfonic acid (PFPeS)                   | 2706-91-4     | 0.0002 | mg/kg | <0.0002           |                                       |                    |          |            |
| EP231X: Perfluorohexane sulfonic acid (PFHxS)                    | 355-46-4      | 0.0002 | mg/kg | <0.0002           | 0.00236 mg/kg                         | 71.6               | 50       | 150        |
| EP231X: Perfluoroheptane sulfonic acid (PFHpS)                   | 375-92-8      | 0.0002 | mg/kg | <0.0002           |                                       |                    |          |            |
| EP231X: Perfluorooctane sulfonic acid (PFOS)                     | 1763-23-1     | 0.0002 | mg/kg | <0.0002           | 0.00232 mg/kg                         | 64.2               | 50       | 150        |
| P231X: Perfluorodecane sulfonic acid (PFDS)                      | 335-77-3      | 0.0002 | mg/kg | <0.0002           |                                       |                    |          |            |
| EP231 TOP B: Perfluoroalkyl Carboxylic Acids (QCLo               | t: 2527289)   |        |       |                   |                                       |                    |          |            |
| EP231X: Perfluorobutanoic acid (PFBA)                            | 375-22-4      | 0.001  | mg/kg | <0.001            |                                       |                    |          |            |
| EP231X: Perfluoropentanoic acid (PFPeA)                          | 2706-90-3     | 0.0002 | mg/kg | <0.0002           |                                       |                    |          |            |
| EP231X: Perfluorohexanoic acid (PFHxA)                           | 307-24-4      | 0.0002 | mg/kg | <0.0002           |                                       |                    |          |            |
| EP231X: Perfluoroheptanoic acid (PFHpA)                          | 375-85-9      | 0.0002 | mg/kg | <0.0002           |                                       |                    |          |            |
| EP231X: Perfluorooctanoic acid (PFOA)                            | 335-67-1      | 0.0002 | mg/kg | <0.0002           | 0.0025 mg/kg                          | 72.2               | 50       | 150        |
| P231X: Perfluorononanoic acid (PFNA)                             | 375-95-1      | 0.0002 | mg/kg | <0.0002           |                                       |                    |          |            |
| P231X: Perfluorodecanoic acid (PFDA)                             | 335-76-2      | 0.0002 | mg/kg | <0.0002           |                                       |                    |          |            |
| EP231X: Perfluoroundecanoic acid (PFUnDA)                        | 2058-94-8     | 0.0002 | mg/kg | <0.0002           |                                       |                    |          |            |
| EP231X: Perfluorododecanoic acid (PFDoDA)                        | 307-55-1      | 0.0002 | mg/kg | <0.0002           |                                       |                    |          |            |
| EP231X: Perfluorotridecanoic acid (PFTrDA)                       | 72629-94-8    | 0.0002 | mg/kg | <0.0002           |                                       |                    |          |            |
| EP231X: Perfluorotetradecanoic acid (PFTeDA)                     | 376-06-7      | 0.0005 | mg/kg | <0.0005           |                                       |                    |          |            |
| P231 TOP C: Perfluoroalkyl Sulfonamides (QCLot: 2                | 2527289)      |        |       |                   |                                       |                    |          |            |
| EP231X: Perfluorooctane sulfonamide (FOSA)                       | 754-91-6      | 0.0002 | mg/kg | <0.0002           |                                       |                    |          |            |
| EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)            | 31506-32-8    | 0.0005 | mg/kg | <0.0005           |                                       |                    |          |            |
| P231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2     | 0.0005 | mg/kg | <0.0005           |                                       |                    |          |            |
| EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)     | 24448-09-7    | 0.0005 | mg/kg | <0.0005           |                                       |                    |          |            |
| P231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2     | 0.0005 | mg/kg | <0.0005           |                                       |                    |          |            |
| P231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9     | 0.0002 | mg/kg | <0.0002           |                                       |                    |          |            |
| P231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6     | 0.0002 | mg/kg | <0.0002           |                                       |                    |          |            |
| EP231 TOP D: (n:2) Fluorotelomer Sulfonic Acids (QC              | Lot: 2527289) |        |       |                   |                                       |                    |          |            |
| EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                | 757124-72-4   | 0.0005 | mg/kg | <0.0005           |                                       |                    |          |            |
| EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                | 27619-97-2    | 0.0005 | mg/kg | <0.0005           | 0.00018 mg/kg                         | 0.00               | 0        | 200        |
| EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                | 39108-34-4    | 0.0005 | mg/kg | <0.0005           |                                       |                    |          |            |

Page : 5 of 5

Work Order : EB1921187-AC Amendment 1
Client : AECOM Australia Pty Ltd
Project : 60609758 \_HH



| Sub-Matrix: SOIL                                                             |             |        |        | Method Blank (MB) | Laboratory Control Spike (LCS) Report |          |            |      |  |  |  |  |
|------------------------------------------------------------------------------|-------------|--------|--------|-------------------|---------------------------------------|----------|------------|------|--|--|--|--|
|                                                                              |             |        | Report | Spike             | Spike Recovery (%)                    | Recovery | Limits (%) |      |  |  |  |  |
| Method: Compound                                                             | CAS Number  | LOR    | Unit   | Result            | Concentration                         | LCS      | Low        | High |  |  |  |  |
| EP231_TOP_D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2527289) - continued |             |        |        |                   |                                       |          |            |      |  |  |  |  |
| EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                          | 120226-60-0 | 0.0005 | mg/kg  | <0.0005           |                                       |          |            |      |  |  |  |  |

### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.



## QA/QC Compliance Assessment to assist with Quality Review

**Work Order** : **EB1921187** Page : 1 of 6

Client : AECOM Australia Pty Ltd Laboratory : Environmental Division Brisbane

 Contact
 : MR JAMES PEACHEY
 Telephone
 : +61 7 3552 8616

 Project
 : 60609758
 \_HH
 Date Samples Received
 : 13-Aug-2019

 Site
 :-- Issue Date
 : 21-Aug-2019

Sampler : CAMDEN McCOSKER No. of samples received : 4
Order number : 60609758 No. of samples analysed : 4

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- Duplicate outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers: Analysis Holding Time Compliance**

• Analysis Holding Time Outliers exist - please see following pages for full details.

#### **Outliers: Frequency of Quality Control Samples**

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 6 Work Order : EB1921187

Client : AECOM Australia Pty Ltd
Project : 60609758 \_HH



#### **Outliers: Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

| Compound Group Name                          | Laboratory Sample ID | Client Sample ID | Analyte                | CAS Number | Data   | Limits   | Comment                      |
|----------------------------------------------|----------------------|------------------|------------------------|------------|--------|----------|------------------------------|
| Duplicate (DUP) RPDs                         |                      |                  |                        |            |        |          |                              |
| EP231_TOP_B: Perfluoroalkyl Carboxylic Acids |                      |                  | Perfluorodecanoic acid | 335-76-2   | 28.6 % | 0% - 20% | RPD exceeds LOR based limits |
|                                              |                      |                  | (PFDA)                 |            |        |          |                              |
| EP231_TOP_B: Perfluoroalkyl Carboxylic Acids |                      |                  | Perfluoroundecanoic    | 2058-94-8  | 27.7 % | 0% - 20% | RPD exceeds LOR based limits |
|                                              |                      |                  | acid (PFUnDA)          |            |        |          |                              |

#### **Outliers: Analysis Holding Time Compliance**

Matrix: SOIL

| Matrix. Goil                                |                          |                    |         |               |                  |         |
|---------------------------------------------|--------------------------|--------------------|---------|---------------|------------------|---------|
| Method Programme Technology (1997)          | Extraction / Preparation |                    |         | Analysis      |                  |         |
| Container / Client Sample ID(s)             | Date extracted           | Due for extraction | Days    | Date analysed | Due for analysis | Days    |
|                                             |                          |                    | overdue |               |                  | overdue |
| EA055: Moisture Content (Dried @ 105-110°C) |                          |                    |         |               |                  |         |
| HDPE Soil Jar                               |                          |                    |         |               |                  |         |
|                                             |                          |                    |         | 16-Aug-2019   | 15-Aug-2019      | 1       |
| HDPE Soil Jar                               |                          |                    |         |               |                  |         |
| HH_SS1_0.5_190724                           |                          |                    |         | 16-Aug-2019   | 07-Aug-2019      | 9       |
| HDPE Soil Jar                               |                          |                    |         |               |                  |         |
|                                             |                          |                    |         | 16-Aug-2019   | 10-Aug-2019      | 6       |
| HDPE Soil Jar                               |                          |                    |         |               |                  |         |
|                                             |                          |                    |         | 16-Aug-2019   | 12-Aug-2019      | 4       |

### **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

| Evaluation: × = Hol | ling time breach; | ✓ = Within holding f | time. |
|---------------------|-------------------|----------------------|-------|
|---------------------|-------------------|----------------------|-------|

| Mathx. Gold                                 |             |                          |                    | Lvalaation | Holding time  | broadin, Trian   | in notaling time |
|---------------------------------------------|-------------|--------------------------|--------------------|------------|---------------|------------------|------------------|
| Method                                      | Sample Date | Extraction / Preparation |                    |            | Analysis      |                  |                  |
| Container / Client Sample ID(s)             |             | Date extracted           | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation       |
| EA055: Moisture Content (Dried @ 105-110°C) |             |                          |                    |            |               |                  |                  |
| HDPE Soil Jar (EA055)                       |             |                          |                    |            |               |                  |                  |
|                                             | 01-Aug-2019 |                          |                    |            | 16-Aug-2019   | 15-Aug-2019      | ×                |
| HDPE Soil Jar (EA055)                       |             |                          |                    |            |               |                  |                  |
| HH_SS1_0.5_190724                           | 24-Jul-2019 |                          |                    |            | 16-Aug-2019   | 07-Aug-2019      | ×                |
| HDPE Soil Jar (EA055)                       |             |                          |                    |            |               |                  |                  |
|                                             | 27-Jul-2019 |                          |                    |            | 16-Aug-2019   | 10-Aug-2019      | sc               |
| HDPE Soil Jar (EA055)                       |             |                          |                    |            |               |                  |                  |
|                                             | 29-Jul-2019 |                          |                    |            | 16-Aug-2019   | 12-Aug-2019      | ×                |

Page : 3 of 6 Work Order : EB1921187

Client : AECOM Australia Pty Ltd
Project : 60609758 HH



Matrix: SOIL Evaluation: × = Holding time breach ; ✓ = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation EP231 TOP A: Perfluoroalkyl Sulfonic Acids HDPE Soil Jar (EP231X (TOP)) 01-Aug-2019 16-Aug-2019 29-Jan-2020 17-Aug-2019 25-Sep-2019 1 HDPE Soil Jar (EP231X (TOP)) HH SS1\_0.5\_190724 24-Jul-2019 16-Aug-2019 21-Jan-2020 1 17-Aug-2019 25-Sep-2019 HDPE Soil Jar (EP231X (TOP)) 27-Jul-2019 16-Aug-2019 24-Jan-2020 17-Aug-2019 25-Sep-2019 1 HDPE Soil Jar (EP231X (TOP)) 29-Jul-2019 16-Aug-2019 26-Jan-2020 17-Aug-2019 25-Sep-2019 EP231\_TOP\_B: Perfluoroalkyl Carboxylic Acids HDPE Soil Jar (EP231X (TOP)) 01-Aug-2019 16-Aug-2019 29-Jan-2020 1 17-Aug-2019 25-Sep-2019 HDPE Soil Jar (EP231X (TOP)) 24-Jul-2019 16-Aug-2019 21-Jan-2020 1 17-Aug-2019 25-Sep-2019 HH SS1 0.5 190724 HDPE Soil Jar (EP231X (TOP)) 24-Jan-2020 25-Sep-2019 27-Jul-2019 16-Aug-2019 1 17-Aug-2019 HDPE Soil Jar (EP231X (TOP)) 25-Sep-2019 26-Jan-2020 29-Jul-2019 16-Aug-2019 17-Aug-2019 EP231 TOP C: Perfluoroalkyl Sulfonamides HDPE Soil Jar (EP231X (TOP)) 01-Aug-2019 29-Jan-2020 17-Aug-2019 25-Sep-2019 16-Aug-2019 1 HDPE Soil Jar (EP231X (TOP)) 24-Jul-2019 16-Aug-2019 21-Jan-2020 1 17-Aug-2019 25-Sep-2019 HH SS1 0.5 190724 HDPE Soil Jar (EP231X (TOP)) 24-Jan-2020 25-Sep-2019 27-Jul-2019 16-Aug-2019 17-Aug-2019 HDPE Soil Jar (EP231X (TOP)) 26-Jan-2020 29-Jul-2019 16-Aug-2019 17-Aug-2019 25-Sep-2019 EP231\_TOP\_D: (n:2) Fluorotelomer Sulfonic Acids HDPE Soil Jar (EP231X (TOP)) 29-Jan-2020 01-Aug-2019 16-Aug-2019 1 17-Aug-2019 25-Sep-2019 HDPE Soil Jar (EP231X (TOP)) 24-Jul-2019 21-Jan-2020 25-Sep-2019 HH SS1 0.5 190724 16-Aug-2019 17-Aug-2019 HDPE Soil Jar (EP231X (TOP)) 27-Jul-2019 16-Aug-2019 24-Jan-2020 1 17-Aug-2019 25-Sep-2019 HDPE Soil Jar (EP231X (TOP)) 29-Jul-2019 26-Jan-2020 25-Sep-2019 16-Aug-2019 17-Aug-2019

Page : 4 of 6 Work Order : EB1921187

Client : AECOM Australia Pty Ltd Project : 60609758 \_HH



Matrix: SOIL Evaluation: **x** = Holding time breach ; ✓ = Within holding time. Method Extraction / Preparation Analysis Sample Date Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation EP231\_TOP\_P: PFAS Sums HDPE Soil Jar (EP231X (TOP)) 01-Aug-2019 16-Aug-2019 29-Jan-2020 17-Aug-2019 25-Sep-2019 HDPE Soil Jar (EP231X (TOP)) 24-Jul-2019 16-Aug-2019 21-Jan-2020 25-Sep-2019 HH SS1 0.5 190724 17-Aug-2019 HDPE Soil Jar (EP231X (TOP)) 27-Jul-2019 16-Aug-2019 24-Jan-2020 17-Aug-2019 25-Sep-2019 HDPE Soil Jar (EP231X (TOP))

29-Jul-2019

16-Aug-2019

26-Jan-2020

17-Aug-2019

25-Sep-2019

Page : 5 of 6
Work Order : EB1921187

Client : AECOM Australia Pty Ltd Project : 60609758 \_HH



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL

Evaluation: x = Quality Control frequency not within specification; y = Quality Control frequency within specification.

| Wattix. SOIL                         | Evaluation: • - Quality Control requestey not within specification, • - Quality Control requestey within specification. |       |         |          |          |            |                                |  |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------|---------|----------|----------|------------|--------------------------------|--|
| Quality Control Sample Type          |                                                                                                                         | Count |         | Rate (%) |          |            | Quality Control Specification  |  |
| Analytical Methods                   | Method                                                                                                                  | QC    | Regular | Actual   | Expected | Evaluation |                                |  |
| Laboratory Duplicates (DUP)          |                                                                                                                         |       |         |          |          |            |                                |  |
| Moisture Content                     | EA055                                                                                                                   | 1     | 4       | 25.00    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| PFAS by LCMSMS after oxidation (TOP) | EP231X (TOP)                                                                                                            | 1     | 4       | 25.00    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Laboratory Control Samples (LCS)     |                                                                                                                         |       |         |          |          |            |                                |  |
| PFAS by LCMSMS after oxidation (TOP) | EP231X (TOP)                                                                                                            | 1     | 4       | 25.00    | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Method Blanks (MB)                   |                                                                                                                         |       |         |          |          |            |                                |  |
| PFAS by LCMSMS after oxidation (TOP) | EP231X (TOP)                                                                                                            | 1     | 4       | 25.00    | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |

Page : 6 of 6 Work Order : EB1921187

Client : AECOM Australia Pty Ltd Project : 60609758 \_HH



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                   | Method       | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------|--------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture Content                     | EA055        | SOIL   | In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PFAS by LCMSMS after oxidation (TOP) | EP231X (TOP) | SOIL   | In house, following oxidation per Houtz, Erika F.; Sedlak, David L. (2012): Oxidative Conversion as a Means of Detecting Precursors to Perfluoroalkyl Acids in Urban Runoff. In Environmental Science & Technology 46 (17), pp. 9342¿9349.: A portion of the oxidised sample is mixed with methanol (1:1) prior to analysis by LC-Electrospray-MS-MS, Negative Mode using MRM. Where commercially available, isotopically labelled analogues of the target analytes are used as internal standards for quantification. Where a labelled analogue is not commercially available, the internal standard with similar chemistry and the closest retention time to the target is used for quantification. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. |
| Preparation Methods                  | Method       | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sample Extraction for PFAS           | EP231-PR     | SOIL   | In house                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

From: Peachey, James < james.peachey@aecom.com>

Sent: Friday, 23 August 2019 5:47 AM

To: Carsten Emrich < Carsten. Emrich@alsglobal.com >

**Cc:** ALSEnviro Brisbane < <u>ALSEnviro.Brisbane@alsglobal.com</u>> **Subject:** [EXTERNAL] - Rebatch EB1921176 and ES1925572

**CAUTION:** This email originated from outside of ALS. Do not click links or open attachments unless you recognize the sender and are sure content is relevant to you.

Hi Carsten

Please could you rebatch the following samples for TOPA (EP231X-TOP):

EB1921176 -003 (HH\_MW03\_190806)

### Regards

### **James Peachey**

Associate Director - Environment D +61 7 3553 3909 M +61 426 206 362 james.peachey@aecom.com

### **AECOM**

Level 8, 540 Wickham Street, Fortitude Valley, QLD 4006 PO Box 1307 Fortitude Valley QLD 4006 T +61 7 3553 2000 F +61 7 3553 2050 aecom.com

Imagine it. Delivered.

LinkedIn Twitter Facebook Instagram

Environmental Division
Brisbane
Work Order Reference
EB1922105



Telephone: +61-7-3243 7222



# **CERTIFICATE OF ANALYSIS**

**Work Order** : EB1922105 Page : 1 of 5

Amendment : 1

Client : AECOM Australia Pty Ltd

Contact : MR JAMES PEACHEY Contact

Address

Brisbane

Telephone : +61 07 3553 2000 Project 60609758

Order number : 60609758 2.0

C-O-C number

Sampler : NK

Site · QFES Home Hill

Quote number : BN/112/19 No. of samples received : 4

No. of samples analysed : 4

Laboratory : Environmental Division Brisbane

: Carsten Emrich

Address : 2 Byth Street Stafford QLD Australia 4053

Telephone : +61 7 3552 8616 **Date Samples Received** : 23-Aug-2019 05:47

Date Analysis Commenced : 27-Aug-2019

Issue Date : 12-Sep-2019 17:46



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.** 

### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Diana Mesa 2IC Organic Chemist Brisbane Organics, Stafford, QLD Page : 2 of 5

Work Order : EB1922105 Amendment 1
Client : AECOM Australia Ptv Ltd

Project · 60609758



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Amendment (12/9/19): This report has been amended as a result of misinterpretation of sample identification numbers (IDs). All analysis results are as per the previous report

Page : 3 of 5

Work Order : EB1922105 Amendment 1
Client : AECOM Australia Pty Ltd

Project : 60609758

# Analytical Results

| Sub-Matrix: WATER<br>(Matrix: WATER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | ent sample ID | HH_MW03_190806 |                   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|----------------|-------------------|--|
| , and the same of | Cli        | ent sampli    | ng date / time | 06-Aug-2019 00:00 |  |
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CAS Number | LOR           | Unit           | EB1922105-001     |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |               |                | Result            |  |
| EP231_TOP_A: Perfluoroalkyl Sulfonic Ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ids        |               |                |                   |  |
| Perfluorobutane sulfonic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 375-73-5   | 0.02          | μg/L           | 0.05              |  |
| (PFBS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |               |                |                   |  |
| Perfluoropentane sulfonic acid (PFPeS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2706-91-4  | 0.02          | μg/L           | 0.08              |  |
| Perfluorohexane sulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 355-46-4   | 0.02          | μg/L           | 0.81              |  |
| Perfluoroheptane sulfonic acid (PFHpS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 375-92-8   | 0.02          | μg/L           | 0.03              |  |
| Perfluorooctane sulfonic acid (PFOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1763-23-1  | 0.01          | μg/L           | 0.75              |  |
| Perfluorodecane sulfonic acid (PFDS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 335-77-3   | 0.02          | μg/L           | <0.02             |  |
| EP231_TOP_B: Perfluoroalkyl Carboxylic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Acids      |               |                |                   |  |
| Perfluorobutanoic acid (PFBA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 375-22-4   | 0.1           | μg/L           | <0.1              |  |
| Perfluoropentanoic acid (PFPeA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2706-90-3  | 0.02          | μg/L           | 0.17              |  |
| Perfluorohexanoic acid (PFHxA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 307-24-4   | 0.02          | μg/L           | 0.54              |  |
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 375-85-9   | 0.02          | μg/L           | 0.08              |  |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 335-67-1   | 0.01          | μg/L           | 0.06              |  |
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 375-95-1   | 0.02          | μg/L           | <0.02             |  |
| Perfluorodecanoic acid (PFDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 335-76-2   | 0.02          | μg/L           | <0.02             |  |
| Perfluoroundecanoic acid (PFUnDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2058-94-8  | 0.02          | μg/L           | <0.02             |  |
| Perfluorododecanoic acid (PFDoDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 307-55-1   | 0.02          | μg/L           | <0.02             |  |
| Perfluorotridecanoic acid (PFTrDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72629-94-8 | 0.02          | μg/L           | <0.02             |  |
| Perfluorotetradecanoic acid (PFTeDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 376-06-7   | 0.05          | μg/L           | <0.05             |  |
| EP231_TOP_C: Perfluoroalkyl Sulfonamic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | des        |               |                |                   |  |
| Perfluorooctane sulfonamide (FOSA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 754-91-6   | 0.02          | μg/L           | <0.02             |  |
| N-Methyl perfluorooctane<br>sulfonamide (MeFOSA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31506-32-8 | 0.05          | μg/L           | <0.05             |  |
| N-Ethyl perfluorooctane<br>sulfonamide (EtFOSA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4151-50-2  | 0.05          | μg/L           | <0.05             |  |



| - |             |
|---|-------------|
|   |             |
|   |             |
| - |             |
|   |             |
|   |             |
|   |             |
|   |             |
| _ |             |
| _ |             |
| _ |             |
| _ |             |
| - |             |
| - |             |
| - |             |
|   | <del></del> |
|   |             |
|   |             |
|   |             |
| - |             |
|   |             |
|   |             |
|   |             |
|   |             |
|   |             |
| - |             |

Page

: 4 of 5 : EB1922105 Amendment 1 Work Order : AECOM Australia Pty Ltd : 60609758 Client

Project

# Analytical Results

| Sub-Matrix: WATER<br>(Matrix: WATER)    |                   | Cli        | ent sample ID   | HH_MW03_190806    |  |  |
|-----------------------------------------|-------------------|------------|-----------------|-------------------|--|--|
| franka metaly                           | Cli               | ent sampli | ing date / time | 06-Aug-2019 00:00 |  |  |
| Compound                                | CAS Number        | LOR        | Unit            | EB1922105-001     |  |  |
| •                                       |                   |            |                 | Result            |  |  |
| EP231_TOP_C: Perfluoroalkyl Sulfona     | mides - Continued |            |                 |                   |  |  |
| N-Methyl perfluorooctane                | 24448-09-7        | 0.05       | μg/L            | <0.05             |  |  |
| sulfonamidoethanol (MeFOSE)             |                   |            |                 |                   |  |  |
| N-Ethyl perfluorooctane                 | 1691-99-2         | 0.05       | μg/L            | <0.05             |  |  |
| sulfonamidoethanol (EtFOSE)             |                   |            |                 |                   |  |  |
| N-Methyl perfluorooctane                | 2355-31-9         | 0.02       | μg/L            | <0.02             |  |  |
| sulfonamidoacetic acid                  |                   |            |                 |                   |  |  |
| (MeFOSAA)                               |                   |            |                 |                   |  |  |
| N-Ethyl perfluorooctane                 | 2991-50-6         | 0.02       | μg/L            | <0.02             |  |  |
| sulfonamidoacetic acid                  |                   |            |                 |                   |  |  |
| (EtFOSAA)                               |                   |            |                 |                   |  |  |
| EP231_TOP_D: (n:2) Fluorotelomer Sul    | fonic Acids       |            |                 |                   |  |  |
| 4:2 Fluorotelomer sulfonic acid         | 757124-72-4       | 0.05       | μg/L            | <0.05             |  |  |
| (4:2 FTS)                               |                   |            |                 |                   |  |  |
| 6:2 Fluorotelomer sulfonic acid         | 27619-97-2        | 0.05       | μg/L            | <0.05             |  |  |
| (6:2 FTS)                               |                   |            |                 |                   |  |  |
| 8:2 Fluorotelomer sulfonic acid         | 39108-34-4        | 0.05       | μg/L            | <0.05             |  |  |
| (8:2 FTS)                               |                   |            |                 |                   |  |  |
| 10:2 Fluorotelomer sulfonic acid        | 120226-60-0       | 0.05       | μg/L            | <0.05             |  |  |
| (10:2 FTS)                              |                   |            |                 |                   |  |  |
| EP231_TOP_P: PFAS Sums                  |                   |            |                 |                   |  |  |
| Sum of PFAS                             |                   | 0.01       | μg/L            | 2.57              |  |  |
| Sum of PFHxS and PFOS                   | 355-46-4/1763-23- | 0.01       | μg/L            | 1.56              |  |  |
|                                         | 1                 |            |                 |                   |  |  |
| Sum of TOP C4 - C14 Carboxylates and C4 | 1                 | 0.01       | μg/L            | 2.57              |  |  |
| - C8 Sulfonates                         |                   |            |                 |                   |  |  |
| ^ Sum of TOP C4 - C14 as Fluorine       |                   | 0.01       | μg/L            | 1.64              |  |  |
| EP231 TOP S: PFAS Surrogate             |                   |            |                 |                   |  |  |
| 13C4-PFOS                               |                   | 0.02       | %               | 97.0              |  |  |
| 13C8-PFOA                               |                   | 0.02       | %               | 128               |  |  |
|                                         |                   |            |                 |                   |  |  |



Page

: 5 of 5 : EB1922105 Amendment 1 Work Order : AECOM Australia Pty Ltd : 60609758 Client

Project

# Surrogate Control Limits

| Sub-Matrix: WATER           | Recovery Limits (%) |      |     |  |
|-----------------------------|---------------------|------|-----|--|
| Compound                    | Low                 | High |     |  |
| EP231_TOP_S: PFAS Surrogate |                     |      |     |  |
| 13C4-PFOS                   |                     | 60   | 130 |  |
| 13C8-PFOA                   | 60                  | 130  |     |  |





## **QUALITY CONTROL REPORT**

Issue Date

· 12-Sep-2019

**Work Order** : **EB1922105** Page : 1 of 6

Amendment : 1

Client : AECOM Australia Pty Ltd Laboratory : Environmental Division Brisbane

Contact : MR JAMES PEACHEY Contact : Carsten Emrich

Address : 2 Byth Street Stafford QLD Australia 4053

Brisbane
Telephone : +61 07 3553 2000 Telephone : +61 7 3552 8616

 Project
 : 60609758
 Date Samples Received
 : 23-Aug-2019

 Order number
 : 60609758 2.0
 Date Analysis Commenced
 : 27-Aug-2019

C-O-C number : ----Sampler · NK

Site : QFES Home Hill Quote number : BN/112/19

No. of samples received : 4
No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Diana Mesa 2IC Organic Chemist Brisbane Organics, Stafford, QLD

Page : 2 of 6

Work Order : EB1922105 Amendment 1
Client : AECOM Australia Pty Ltd

Project : 60609758



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: WATER    |                            | Laboratory Duplicate (DUP) Report              |            |      |      |                 |                  |         |                     |
|----------------------|----------------------------|------------------------------------------------|------------|------|------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID           | Method: Compound                               | CAS Number | LOR  | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP231_TOP_A: Per     | fluoroalkyl Sulfonic Acids | s (QC Lot: 2544054)                            |            |      |      |                 |                  |         |                     |
| EB1922105-001        | HH_MW03_190806             | EP231X: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1  | 0.01 | μg/L | 0.75            | 0.75             | 0.00    | 0% - 20%            |
|                      |                            | EP231X: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5   | 0.02 | μg/L | 0.05            | 0.04             | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4  | 0.02 | μg/L | 0.08            | 0.07             | 15.0    | No Limit            |
|                      |                            | EP231X: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4   | 0.02 | μg/L | 0.81            | 0.76             | 7.14    | 0% - 20%            |
|                      |                            | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8   | 0.02 | μg/L | 0.03            | 0.03             | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorodecane sulfonic acid (PFDS)   | 335-77-3   | 0.02 | μg/L | <0.02           | <0.02            | 0.00    | No Limit            |
| EB1922179-007        | Anonymous                  | EP231X: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1  | 0.01 | μg/L | <0.01           | <0.01            | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5   | 0.02 | μg/L | <0.02           | <0.02            | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4  | 0.02 | μg/L | <0.02           | <0.02            | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4   | 0.02 | μg/L | <0.02           | <0.02            | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8   | 0.02 | μg/L | <0.02           | <0.02            | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorodecane sulfonic acid (PFDS)   | 335-77-3   | 0.02 | μg/L | <0.02           | <0.02            | 0.00    | No Limit            |
| EP231_TOP_B: Per     | fluoroalkyl Carboxylic Ac  | ids (QC Lot: 2544054)                          |            |      |      |                 |                  |         |                     |
| EB1922105-001        | HH_MW03_190806             | EP231X: Perfluorooctanoic acid (PFOA)          | 335-67-1   | 0.01 | μg/L | 0.06            | 0.05             | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluoropentanoic acid (PFPeA)        | 2706-90-3  | 0.02 | μg/L | 0.17            | 0.10             | 53.7    | No Limit            |
|                      |                            | EP231X: Perfluorohexanoic acid (PFHxA)         | 307-24-4   | 0.02 | μg/L | 0.54            | 0.47             | 13.5    | 0% - 20%            |
|                      |                            | EP231X: Perfluoroheptanoic acid (PFHpA)        | 375-85-9   | 0.02 | μg/L | 0.08            | 0.05             | 36.2    | No Limit            |
|                      |                            | EP231X: Perfluorononanoic acid (PFNA)          | 375-95-1   | 0.02 | μg/L | <0.02           | <0.02            | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorodecanoic acid (PFDA)          | 335-76-2   | 0.02 | μg/L | <0.02           | <0.02            | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluoroundecanoic acid (PFUnDA)      | 2058-94-8  | 0.02 | μg/L | <0.02           | <0.02            | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorododecanoic acid (PFDoDA)      | 307-55-1   | 0.02 | μg/L | <0.02           | <0.02            | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorotridecanoic acid (PFTrDA)     | 72629-94-8 | 0.02 | μg/L | <0.02           | <0.02            | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorotetradecanoic acid (PFTeDA)   | 376-06-7   | 0.05 | μg/L | <0.05           | <0.05            | 0.00    | No Limit            |
|                      |                            | EP231X: Perfluorobutanoic acid (PFBA)          | 375-22-4   | 0.1  | μg/L | <0.1            | <0.1             | 0.00    | No Limit            |
| EB1922179-007        | Anonymous                  | EP231X: Perfluorooctanoic acid (PFOA)          | 335-67-1   | 0.01 | μg/L | <0.01           | <0.01            | 0.00    | No Limit            |

Page : 3 of 6

Work Order : EB1922105 Amendment 1
Client : AECOM Australia Pty Ltd

Project : 60609758



| Laboratory sample ID<br>EP231_TOP_B: Perflu<br>EB1922179-007 | Client sample ID<br>oroalkyl Carboxylic Acids<br>Anonymous | Method: Compound  (QC Lot: 2544054) - continued                   | CAS Number  | LOR  | Unit | Original Result | Duplicate Result  | RPD (%)    | Recovery Limits (%)      |
|--------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------|-------------|------|------|-----------------|-------------------|------------|--------------------------|
|                                                              |                                                            |                                                                   |             |      |      |                 | Dupiloute recount | 111 2 (70) | 1 1000 Very Linites (70) |
| EB1922179-007                                                | Anonymous                                                  |                                                                   |             |      |      |                 |                   |            |                          |
|                                                              |                                                            | EP231X: Perfluoropentanoic acid (PFPeA)                           | 2706-90-3   | 0.02 | μg/L | <0.02           | <0.02             | 0.00       | No Limit                 |
|                                                              |                                                            | EP231X: Perfluorohexanoic acid (PFHxA)                            | 307-24-4    | 0.02 | μg/L | <0.02           | <0.02             | 0.00       | No Limit                 |
|                                                              |                                                            | EP231X: Perfluoroheptanoic acid (PFHpA)                           | 375-85-9    | 0.02 | μg/L | <0.02           | <0.02             | 0.00       | No Limit                 |
|                                                              |                                                            | EP231X: Perfluorononanoic acid (PFNA)                             | 375-95-1    | 0.02 | μg/L | <0.02           | <0.02             | 0.00       | No Limit                 |
|                                                              |                                                            | EP231X: Perfluorodecanoic acid (PFDA)                             | 335-76-2    | 0.02 | μg/L | <0.02           | <0.02             | 0.00       | No Limit                 |
|                                                              |                                                            | EP231X: Perfluoroundecanoic acid (PFUnDA)                         | 2058-94-8   | 0.02 | μg/L | <0.02           | <0.02             | 0.00       | No Limit                 |
|                                                              |                                                            | EP231X: Perfluorododecanoic acid (PFDoDA)                         | 307-55-1    | 0.02 | μg/L | <0.02           | <0.02             | 0.00       | No Limit                 |
|                                                              |                                                            | EP231X: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8  | 0.02 | μg/L | <0.02           | <0.02             | 0.00       | No Limit                 |
|                                                              |                                                            | EP231X: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7    | 0.05 | μg/L | <0.05           | <0.05             | 0.00       | No Limit                 |
|                                                              |                                                            | EP231X: Perfluorobutanoic acid (PFBA)                             | 375-22-4    | 0.1  | μg/L | <0.1            | <0.1              | 0.00       | No Limit                 |
| P231_TOP_C: Perfl                                            | uoroalkyl Sulfonamides (                                   | QC Lot: 2544054)                                                  |             |      |      |                 |                   |            |                          |
| EB1922105-001                                                | HH_MW03_190806                                             | EP231X: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6    | 0.02 | μg/L | <0.02           | <0.02             | 0.00       | No Limit                 |
|                                                              |                                                            | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9   | 0.02 | μg/L | <0.02           | <0.02             | 0.00       | No Limit                 |
|                                                              |                                                            | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6   | 0.02 | μg/L | <0.02           | <0.02             | 0.00       | No Limit                 |
|                                                              |                                                            | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8  | 0.05 | μg/L | <0.05           | <0.05             | 0.00       | No Limit                 |
|                                                              |                                                            | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2   | 0.05 | μg/L | <0.05           | <0.05             | 0.00       | No Limit                 |
|                                                              |                                                            | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7  | 0.05 | μg/L | <0.05           | <0.05             | 0.00       | No Limit                 |
|                                                              |                                                            | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2   | 0.05 | μg/L | <0.05           | <0.05             | 0.00       | No Limit                 |
| B1922179-007                                                 | Anonymous                                                  | EP231X: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6    | 0.02 | μg/L | <0.02           | <0.02             | 0.00       | No Limit                 |
|                                                              |                                                            | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9   | 0.02 | μg/L | <0.02           | <0.02             | 0.00       | No Limit                 |
|                                                              |                                                            | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6   | 0.02 | μg/L | <0.02           | <0.02             | 0.00       | No Limit                 |
|                                                              |                                                            | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8  | 0.05 | μg/L | <0.05           | <0.05             | 0.00       | No Limit                 |
|                                                              |                                                            | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2   | 0.05 | μg/L | <0.05           | <0.05             | 0.00       | No Limit                 |
|                                                              |                                                            | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7  | 0.05 | μg/L | <0.05           | <0.05             | 0.00       | No Limit                 |
|                                                              |                                                            | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2   | 0.05 | μg/L | <0.05           | <0.05             | 0.00       | No Limit                 |
| P231_TOP_D: (n <u>:2)</u>                                    | Fluorotelomer Sulfonic Ac                                  | ids (QC Lot: 2544054)                                             |             |      |      |                 |                   |            |                          |
| EB1922105-001                                                | HH_MW03_190806                                             | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | 757124-72-4 | 0.05 | μg/L | <0.05           | <0.05             | 0.00       | No Limit                 |

Page : 4 of 6

Work Order : EB1922105 Amendment 1
Client : AECOM Australia Pty Ltd

Project : 60609758



| Sub-Matrix: WATER    |                             |                                                |                | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                     |
|----------------------|-----------------------------|------------------------------------------------|----------------|-----------------------------------|------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID            | Method: Compound                               | CAS Number     | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP231_TOP_D: (n:2)   | ) Fluorotelomer Sulfonic Ac | cids (QC Lot: 2544054) - continued             |                |                                   |      |                 |                  |         |                     |
| EB1922105-001        | HH_MW03_190806              | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2   | 27619-97-2     | 0.05                              | μg/L | <0.05           | <0.05            | 0.00    | No Limit            |
|                      |                             | FTS)                                           |                |                                   |      |                 |                  |         |                     |
|                      |                             | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2   | 39108-34-4     | 0.05                              | μg/L | <0.05           | <0.05            | 0.00    | No Limit            |
|                      |                             | FTS)                                           |                |                                   |      |                 |                  |         |                     |
|                      |                             | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 | 120226-60-0    | 0.05                              | μg/L | <0.05           | <0.05            | 0.00    | No Limit            |
|                      |                             | FTS)                                           |                |                                   |      |                 |                  |         |                     |
| EB1922179-007        | Anonymous                   | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2   | 757124-72-4    | 0.05                              | μg/L | <0.05           | <0.05            | 0.00    | No Limit            |
|                      |                             | FTS)                                           |                |                                   |      |                 |                  |         |                     |
|                      |                             | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2   | 27619-97-2     | 0.05                              | μg/L | <0.05           | <0.05            | 0.00    | No Limit            |
|                      |                             | FTS)                                           |                |                                   |      |                 |                  |         |                     |
|                      |                             | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2   | 39108-34-4     | 0.05                              | μg/L | <0.05           | <0.05            | 0.00    | No Limit            |
|                      |                             | FTS)                                           |                |                                   |      |                 |                  |         |                     |
|                      |                             | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 | 120226-60-0    | 0.05                              | μg/L | <0.05           | <0.05            | 0.00    | No Limit            |
|                      |                             | FTS)                                           |                |                                   |      |                 |                  |         |                     |
| EP231_TOP_P: PFA     | S Sums (QC Lot: 2544054)    |                                                |                |                                   |      |                 |                  |         |                     |
| EB1922105-001        | HH_MW03_190806              | EP231X: Sum of PFAS                            |                | 0.01                              | μg/L | 2.57            | 2.32             | 10.2    | 0% - 20%            |
|                      |                             | EP231X: Sum of PFHxS and PFOS                  | 355-46-4/1763- | 0.01                              | μg/L | 1.56            | 1.51             | 3.26    | 0% - 20%            |
|                      |                             |                                                | 23-1           |                                   |      |                 |                  |         |                     |
|                      |                             | EP231X: Sum of TOP C4 - C14 Carboxylates and   |                | 0.01                              | μg/L | 2.57            | 2.32             | 10.2    | 0% - 20%            |
|                      |                             | C4 - C8 Sulfonates                             |                |                                   |      |                 |                  |         |                     |
|                      |                             | EP231X: Sum of TOP C4 - C14 as Fluorine        |                | 0.01                              | μg/L | 1.64            | 1.48             | 10.3    | 0% - 20%            |
| EB1922179-007        | Anonymous                   | EP231X: Sum of PFAS                            |                | 0.01                              | μg/L | <0.01           | <0.01            | 0.00    | No Limit            |
|                      |                             | EP231X: Sum of PFHxS and PFOS                  | 355-46-4/1763- | 0.01                              | μg/L | <0.01           | <0.01            | 0.00    | No Limit            |
|                      |                             |                                                | 23-1           |                                   |      |                 |                  |         |                     |
|                      |                             | EP231X: Sum of TOP C4 - C14 Carboxylates and   |                | 0.01                              | μg/L | <0.01           | <0.01            | 0.00    | No Limit            |
|                      |                             | C4 - C8 Sulfonates                             |                |                                   |      |                 |                  |         |                     |
|                      |                             | EP231X: Sum of TOP C4 - C14 as Fluorine        |                | 0.01                              | μg/L | <0.01           | <0.01            | 0.00    | No Limit            |

Page : 5 of 6

Work Order : EB1922105 Amendment 1
Client : AECOM Australia Pty Ltd

Project : 60609758



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                                 |                        |      |      | Method Blank (MB) |               | Laboratory Control Spike (LCS) Report |          |            |  |
|-------------------------------------------------------------------|------------------------|------|------|-------------------|---------------|---------------------------------------|----------|------------|--|
|                                                                   |                        |      |      | Report            | Spike         | Spike Recovery (%)                    | Recovery | Limits (%) |  |
| Method: Compound                                                  | CAS Number             | LOR  | Unit | Result            | Concentration | LCS                                   | Low      | High       |  |
| EP231 TOP A: Perfluoroalkyl Sulfonic Acids (QCLot:                | 2544054)               |      |      |                   |               |                                       |          |            |  |
| EP231X: Perfluorobutane sulfonic acid (PFBS)                      | 375-73-5               | 0.02 | μg/L | <0.02             |               |                                       |          |            |  |
| EP231X: Perfluoropentane sulfonic acid (PFPeS)                    | 2706-91-4              | 0.02 | μg/L | <0.02             |               |                                       |          |            |  |
| EP231X: Perfluorohexane sulfonic acid (PFHxS)                     | 355-46-4               | 0.02 | μg/L | <0.02             | 0.946 μg/L    | 87.4                                  | 50       | 150        |  |
| EP231X: Perfluoroheptane sulfonic acid (PFHpS)                    | 375-92-8               | 0.02 | μg/L | <0.02             |               |                                       |          |            |  |
| EP231X: Perfluorooctane sulfonic acid (PFOS)                      | 1763-23-1              | 0.01 | μg/L | <0.01             | 0.928 μg/L    | 64.1                                  | 50       | 150        |  |
| EP231X: Perfluorodecane sulfonic acid (PFDS)                      | 335-77-3               | 0.02 | μg/L | <0.02             |               |                                       |          |            |  |
| EP231_TOP_B: Perfluoroalkyl Carboxylic Acids (QCLc                | ot: 2544054)           |      |      |                   |               |                                       |          |            |  |
| EP231X: Perfluorobutanoic acid (PFBA)                             | 375-22-4               | 0.1  | μg/L | <0.1              |               |                                       |          |            |  |
| EP231X: Perfluoropentanoic acid (PFPeA)                           | 2706-90-3              | 0.02 | μg/L | <0.02             |               |                                       |          |            |  |
| EP231X: Perfluorohexanoic acid (PFHxA)                            | 307-24-4               | 0.02 | μg/L | <0.02             |               |                                       |          |            |  |
| EP231X: Perfluoroheptanoic acid (PFHpA)                           | 375-85-9               | 0.02 | μg/L | <0.02             |               |                                       |          |            |  |
| EP231X: Perfluorooctanoic acid (PFOA)                             | 335-67-1               | 0.01 | μg/L | <0.01             | 1 μg/L        | 99.7                                  | 50       | 150        |  |
| EP231X: Perfluorononanoic acid (PFNA)                             | 375-95-1               | 0.02 | μg/L | <0.02             |               |                                       |          |            |  |
| EP231X: Perfluorodecanoic acid (PFDA)                             | 335-76-2               | 0.02 | μg/L | <0.02             |               |                                       |          |            |  |
| EP231X: Perfluoroundecanoic acid (PFUnDA)                         | 2058-94-8              | 0.02 | μg/L | <0.02             |               |                                       |          |            |  |
| EP231X: Perfluorododecanoic acid (PFDoDA)                         | 307-55-1               | 0.02 | μg/L | <0.02             |               |                                       |          |            |  |
| EP231X: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8             | 0.02 | μg/L | <0.02             |               |                                       |          |            |  |
| EP231X: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7               | 0.05 | μg/L | <0.05             |               |                                       |          |            |  |
| EP231_TOP_C: Perfluoroalkyl Sulfonamides (QCLot: :                | 2544054)               |      |      |                   |               |                                       |          |            |  |
| EP231X: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6               | 0.02 | μg/L | <0.02             |               |                                       |          |            |  |
| EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8             | 0.05 | μg/L | <0.05             |               |                                       |          |            |  |
| EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2              | 0.05 | μg/L | <0.05             |               |                                       |          |            |  |
| EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7             | 0.05 | μg/L | <0.05             |               |                                       |          |            |  |
| EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2              | 0.05 | μg/L | <0.05             |               |                                       |          |            |  |
| EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9              | 0.02 | μg/L | <0.02             |               |                                       |          |            |  |
| EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6              | 0.02 | μg/L | <0.02             |               |                                       |          |            |  |
| EP231 TOP D: (n:2) Fluorotelomer Sulfonic Acids (QC               | CLot: 2544 <u>054)</u> |      |      |                   |               |                                       |          |            |  |
| EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | 757124-72-4            | 0.05 | μg/L | <0.05             |               |                                       |          |            |  |
| EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                 | 27619-97-2             | 0.05 | μg/L | <0.05             | 0.0948 μg/L   | -1.05                                 | 0        | 200        |  |
| EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                 | 39108-34-4             | 0.05 | μg/L | <0.05             |               |                                       |          |            |  |

Page : 6 of 6

Work Order : EB1922105 Amendment 1
Client : AECOM Australia Pty Ltd

Project : 60609758



| Sub-Matrix: WATER                                    |                      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |        |               |                    |                     |      |
|------------------------------------------------------|----------------------|-------------------|---------------------------------------|--------|---------------|--------------------|---------------------|------|
|                                                      |                      |                   |                                       |        |               | Spike Recovery (%) | Recovery Limits (%) |      |
| Method: Compound                                     | CAS Number           | LOR               | Unit                                  | Result | Concentration | LCS                | Low                 | High |
| EP231_TOP_D: (n:2) Fluorotelomer Sulfonic Acids (C   | (CLot: 2544054) - co | ontinued          |                                       |        |               |                    |                     |      |
| EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)  | 120226-60-0          | 0.05              | μg/L                                  | <0.05  |               |                    |                     |      |
| EP231_TOP_P: PFAS Sums (QCLot: 2544054)              |                      |                   |                                       |        |               |                    |                     |      |
| EP231X: Sum of PFAS                                  |                      | 0.01              | μg/L                                  | <0.01  |               |                    |                     |      |
| EP231X: Sum of PFHxS and PFOS                        | 355-46-4/17          | 0.01              | μg/L                                  | <0.01  |               |                    |                     |      |
|                                                      | 63-23-1              |                   |                                       |        |               |                    |                     |      |
| EP231X: Sum of TOP C4 - C14 Carboxylates and C4 - C8 |                      | 0.01              | μg/L                                  | <0.01  |               |                    |                     |      |
| Sulfonates                                           |                      |                   |                                       |        |               |                    |                     |      |
| EP231X: Sum of TOP C4 - C14 as Fluorine              |                      | 0.01              | μg/L                                  | <0.01  |               |                    |                     |      |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.



# QA/QC Compliance Assessment to assist with Quality Review

**Work Order** : **EB1922105** Page : 1 of 5

Amendment : 1

Client : AECOM Australia Pty Ltd Laboratory : Environmental Division Brisbane

 Contact
 : MR JAMES PEACHEY
 Telephone
 : +61 7 3552 8616

 Project
 : 60609758
 Date Samples Received
 : 23-Aug-2019

 Site
 : QFES Home Hill
 Issue Date
 : 12-Sep-2019

Sampler : NK No. of samples received : 4

Order number : 60609758 2.0 No. of samples analysed : 4

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

## **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

### **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

### **Outliers: Frequency of Quality Control Samples**

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 5

Work Order : EB1922105 Amendment 1
Client : AECOM Australia Pty Ltd

Project : 60609758



## **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

| WATER                                           |             |                |                    | ⊏valuatioi | i. 🗸 – Holding time | breach; ▼ = withi | n nolaling til |
|-------------------------------------------------|-------------|----------------|--------------------|------------|---------------------|-------------------|----------------|
| Method                                          | Sample Date | Sample Date E  |                    |            | Analysis            |                   |                |
| Container / Client Sample ID(s)                 |             | Date extracted | Due for extraction | Evaluation | Date analysed       | Due for analysis  | Evaluation     |
| EP231_TOP_A: Perfluoroalkyl Sulfonic Acids      |             |                |                    |            |                     |                   |                |
| HDPE (no PTFE) (EP231X (TOP))                   |             |                |                    |            |                     |                   |                |
| HH_MW03_190806,                                 | 06-Aug-2019 | 27-Aug-2019    | 02-Feb-2020        | ✓          | 27-Aug-2019         | 02-Feb-2020       | ✓              |
| HDPE (no PTFE) (EP231X (TOP))                   |             |                |                    |            |                     |                   |                |
|                                                 | 07-Aug-2019 | 27-Aug-2019    | 03-Feb-2020        | ✓          | 27-Aug-2019         | 03-Feb-2020       | ✓              |
| HDPE (no PTFE) (EP231X (TOP))                   |             |                |                    |            |                     |                   |                |
|                                                 | 08-Aug-2019 | 27-Aug-2019    | 04-Feb-2020        | ✓          | 27-Aug-2019         | 04-Feb-2020       | ✓              |
| EP231_TOP_B: Perfluoroalkyl Carboxylic Acids    |             |                |                    |            |                     |                   |                |
| IDPE (no PTFE) (EP231X (TOP))                   |             |                |                    |            |                     |                   |                |
| HH_MW03_190806,                                 | 06-Aug-2019 | 27-Aug-2019    | 02-Feb-2020        | ✓          | 27-Aug-2019         | 02-Feb-2020       | ✓              |
| IDPE (no PTFE) (EP231X (TOP))                   |             |                |                    |            |                     |                   |                |
| _                                               | 07-Aug-2019 | 27-Aug-2019    | 03-Feb-2020        | ✓          | 27-Aug-2019         | 03-Feb-2020       | ✓              |
| IDPE (no PTFE) (EP231X (TOP))                   |             |                |                    |            |                     |                   |                |
| <u> </u>                                        | 08-Aug-2019 | 27-Aug-2019    | 04-Feb-2020        | ✓          | 27-Aug-2019         | 04-Feb-2020       | ✓              |
| EP231_TOP_C: Perfluoroalkyl Sulfonamides        |             |                |                    |            |                     |                   |                |
| IDPE (no PTFE) (EP231X (TOP))                   |             |                |                    |            |                     |                   |                |
| HH_MW03_190806,                                 | 06-Aug-2019 | 27-Aug-2019    | 02-Feb-2020        | ✓          | 27-Aug-2019         | 02-Feb-2020       | ✓              |
| HDPE (no PTFE) (EP231X (TOP))                   |             |                |                    |            |                     |                   |                |
|                                                 | 07-Aug-2019 | 27-Aug-2019    | 03-Feb-2020        | ✓          | 27-Aug-2019         | 03-Feb-2020       | ✓              |
| IDPE (no PTFE) (EP231X (TOP))                   |             |                |                    |            |                     |                   |                |
|                                                 | 08-Aug-2019 | 27-Aug-2019    | 04-Feb-2020        | ✓          | 27-Aug-2019         | 04-Feb-2020       | ✓              |
| EP231_TOP_D: (n:2) Fluorotelomer Sulfonic Acids |             |                |                    |            |                     |                   |                |
| IDPE (no PTFE) (EP231X (TOP))                   |             |                |                    |            |                     |                   |                |
| HH MW03 190806,                                 | 06-Aug-2019 | 27-Aug-2019    | 02-Feb-2020        | 1          | 27-Aug-2019         | 02-Feb-2020       | 1              |
| IDPE (no PTFE) (EP231X (TOP))                   | _           |                |                    |            |                     |                   |                |
|                                                 | 07-Aug-2019 | 27-Aug-2019    | 03-Feb-2020        | ✓          | 27-Aug-2019         | 03-Feb-2020       | ✓              |
| IDPE (no PTFE) (EP231X (TOP))                   |             |                |                    |            |                     |                   |                |
|                                                 | 08-Aug-2019 | 27-Aug-2019    | 04-Feb-2020        | ✓          | 27-Aug-2019         | 04-Feb-2020       | <b>√</b>       |

Page : 3 of 5

Work Order : EB1922105 Amendment 1
Client : AECOM Australia Pty Ltd

Project : 60609758



| Matrix: WATER                                 |             |                                   |                    | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time. |
|-----------------------------------------------|-------------|-----------------------------------|--------------------|------------|--------------------|--------------------|-----------------|
| Method                                        | Sample Date | Extraction / Preparation Analysis |                    |            |                    |                    |                 |
| Container / Client Sample ID(s)               |             | Date extracted                    | Due for extraction | Evaluation | Date analysed      | Due for analysis   | Evaluation      |
| EP231_TOP_P: PFAS Sums                        |             |                                   |                    |            |                    |                    |                 |
| HDPE (no PTFE) (EP231X (TOP)) HH_MW03_190806, | 06-Aug-2019 | 27-Aug-2019                       | 02-Feb-2020        | 1          | 27-Aug-2019        | 02-Feb-2020        | <b>✓</b>        |
| HDPE (no PTFE) (EP231X (TOP))                 | 07-Aug-2019 | 27-Aug-2019                       | 03-Feb-2020        | 1          | 27-Aug-2019        | 03-Feb-2020        | <b>✓</b>        |
| HDPE (no PTFE) (EP231X (TOP))                 | 08-Aug-2019 | 27-Aug-2019                       | 04-Feb-2020        | ✓          | 27-Aug-2019        | 04-Feb-2020        | <b>√</b>        |

Page : 4 of 5

Work Order : EB1922105 Amendment 1
Client : AECOM Australia Pty Ltd

Project : 60609758



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

| Matrix: WATER                        |              |    |         | Lvaldatio | i. Quality 00 | na or noquonoy n | of within specification, it - quality control frequency within specification. |
|--------------------------------------|--------------|----|---------|-----------|---------------|------------------|-------------------------------------------------------------------------------|
| Quality Control Sample Type          |              | Co | ount    | Rate (%)  |               |                  | Quality Control Specification                                                 |
| Analytical Methods                   | Method       | QC | Regular | Actual    | Expected      | Evaluation       |                                                                               |
| Laboratory Duplicates (DUP)          |              |    |         |           |               |                  |                                                                               |
| PFAS by LCMSMS after oxidation (TOP) | EP231X (TOP) | 2  | 18      | 11.11     | 10.00         | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Laboratory Control Samples (LCS)     |              |    |         |           |               |                  |                                                                               |
| PFAS by LCMSMS after oxidation (TOP) | EP231X (TOP) | 1  | 18      | 5.56      | 5.00          | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Method Blanks (MB)                   |              |    |         |           |               |                  |                                                                               |
| PFAS by LCMSMS after oxidation (TOP) | EP231X (TOP) | 1  | 18      | 5.56      | 5.00          | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |

Page : 5 of 5

Work Order : EB1922105 Amendment 1
Client : AECOM Australia Pty Ltd

Project : 60609758



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                         | Method       | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------|--------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PFAS by LCMSMS after oxidation (TOP)       | EP231X (TOP) | WATER  | In house, following oxidation per Houtz, Erika F.; Sedlak, David L. (2012): Oxidative Conversion as a Means of Detecting Precursors to Perfluoroalkyl Acids in Urban Runoff. In Environmental Science & Technology 46 (17), pp. 9342; 9349.: A portion of the oxidised sample is mixed with methanol (1:1) prior to analysis by LC-Electrospray-MS-MS, Negative Mode using MRM. Where commercially available, isotopically labelled analogues of the target analytes are used as internal standards for quantification. Where a labelled analogue is not commercially available, the internal standard with similar chemistry and the closest retention time to the target is used for quantification. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. |
| Preparation Methods                        | Method       | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Total Oxidisable Precursor Digest for PFAS | * ORG70-W    | WATER  | In-House with oxidation per Houtz, Erika F.; Sedlak, David L. (2012): Oxidative Conversion as a Means of Detecting Precursors to Perfluoroalkyl Acids in Urban Runoff. In Environmental Science & Technology 46 (17), pp. 9342¿9349:  A 5 mL sample is digested with persulfate under alkaline conditions, neutralised and prepared for analysis per EP231.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |